{"title":"Sialic Acid-based Glycoconjugation on Myricetin-encapsulated Cationic Nanocarriers for the Treatment of Alzheimer's.","authors":"Tripti Halder, Niyati Acharya","doi":"10.1007/s11095-025-03877-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The current study was conducted to develop and evaluate sialic acid grafted cationic myricetin (MY) fabricated nanostructured lipid carrier (Sia-Cat-MY-NLC) for Alzheimer's disease (AD) management.</p><p><strong>Methods: </strong>In-vitro amyloid beta aggregation inhibition and mitochondrial membrane potential of prepared NLCs were observed in SH-SY5Y cells. The transendothelial electrical resistance was measured through hCMEC/D3 cells. Pharmacokinetic and pharmacodynamic studies were conducted to evaluate neuropharmacokinetic parameters and levels of AD hallmarks in AD rats.</p><p><strong>Results: </strong>The optimized formulations showed particle sizes (142.26 ± 24.16 nm and 236.3 ± 15.26 nm), zeta potentials (36.5 ± 2.43 mv and -2.4 ± 1.30 mv) respectively for Cat-MY-NLC and Sia-Cat-MY-NLC. Prepared NLCs treatments revealed significant neuroprotective effects in SH-SY5Y cells followed by the ability to cross the in-vitro BBB model. Results of pharmacokinetic studies showed 5.3 and 5.88 folds enhanced bioavailability with Cat-MY-NLC and Sia-Cat-MY-NLC administration respectively.</p><p><strong>Conclusions: </strong>The results of enzymatic analysis showed a significant (p < 0.05) restoration of AD hallmark levels in the brain after Sia-Cat-MY-NLC treatment than Cat-MY-NLC.</p>","PeriodicalId":20027,"journal":{"name":"Pharmaceutical Research","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11095-025-03877-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: The current study was conducted to develop and evaluate sialic acid grafted cationic myricetin (MY) fabricated nanostructured lipid carrier (Sia-Cat-MY-NLC) for Alzheimer's disease (AD) management.
Methods: In-vitro amyloid beta aggregation inhibition and mitochondrial membrane potential of prepared NLCs were observed in SH-SY5Y cells. The transendothelial electrical resistance was measured through hCMEC/D3 cells. Pharmacokinetic and pharmacodynamic studies were conducted to evaluate neuropharmacokinetic parameters and levels of AD hallmarks in AD rats.
Results: The optimized formulations showed particle sizes (142.26 ± 24.16 nm and 236.3 ± 15.26 nm), zeta potentials (36.5 ± 2.43 mv and -2.4 ± 1.30 mv) respectively for Cat-MY-NLC and Sia-Cat-MY-NLC. Prepared NLCs treatments revealed significant neuroprotective effects in SH-SY5Y cells followed by the ability to cross the in-vitro BBB model. Results of pharmacokinetic studies showed 5.3 and 5.88 folds enhanced bioavailability with Cat-MY-NLC and Sia-Cat-MY-NLC administration respectively.
Conclusions: The results of enzymatic analysis showed a significant (p < 0.05) restoration of AD hallmark levels in the brain after Sia-Cat-MY-NLC treatment than Cat-MY-NLC.
期刊介绍:
Pharmaceutical Research, an official journal of the American Association of Pharmaceutical Scientists, is committed to publishing novel research that is mechanism-based, hypothesis-driven and addresses significant issues in drug discovery, development and regulation. Current areas of interest include, but are not limited to:
-(pre)formulation engineering and processing-
computational biopharmaceutics-
drug delivery and targeting-
molecular biopharmaceutics and drug disposition (including cellular and molecular pharmacology)-
pharmacokinetics, pharmacodynamics and pharmacogenetics.
Research may involve nonclinical and clinical studies, and utilize both in vitro and in vivo approaches. Studies on small drug molecules, pharmaceutical solid materials (including biomaterials, polymers and nanoparticles) biotechnology products (including genes, peptides, proteins and vaccines), and genetically engineered cells are welcome.