Sara Khan, Mohd Muazzam Khan, Badruddeen, Usama Ahmad, Wasim Akhtar, Anas Islam
{"title":"Exploring NMDAR pathways in ischemic stroke: implications for neurotoxic and neuroprotective mechanisms and therapeutic strategies.","authors":"Sara Khan, Mohd Muazzam Khan, Badruddeen, Usama Ahmad, Wasim Akhtar, Anas Islam","doi":"10.1007/s00210-025-04357-8","DOIUrl":null,"url":null,"abstract":"<p><p>Stroke is one of the leading causes of disability and mortality worldwide, with ischemic stroke representing the most prevalent and devastating form. This review offers an in-depth exploration of the critical role of N-Methyl-D-Aspartate Receptor (NMDAR) signaling in mediating the brain's response to ischemic injury. NMDAR activation triggers glutamate excitotoxicity, setting off a cascade of neurotoxic events that lead to mitochondrial dysfunction and the generation of reactive oxygen species (ROS). These damaging processes not only intensify neuronal injury but also activate apoptotic pathways, including p53-mediated and Notch signaling. Furthermore, the review highlights necroptosis as a key cell death mechanism in ischemic injury and examines the subsequent disruption of the blood-brain barrier (BBB), which exacerbates brain damage. In the context of neuroprotective signaling, we explore the distinct roles of synaptic and extrasynaptic NMDAR activation, neurotrophic factor-mediated signaling, and the intricate crosstalk between neurotoxic and neuroprotective pathways. This review also explores novel hypotheses and emerging perspectives in NMDAR-mediated ischemic stroke, highlighting potential mechanisms and therapeutic implications. Additionally, it covers cutting-edge experimental approaches to investigate NMDAR function in stroke and provides critical insights into conflicting findings in NMDAR research, addressing key controversies and their impact on future studies. Therapeutic strategies targeting ischemic stroke are critically examined, with an emphasis on potential interventions that could mitigate the effects of ischemia. The review also highlights ongoing clinical trials investigating novel therapeutic approaches and outlines the future direction of ischemic stroke therapy. This comprehensive review offers a deep understanding of the complex molecular mechanisms involved in ischemic stroke via NMDAR and provides valuable insights into the promising therapeutic avenues that could lead to more effective treatments.</p>","PeriodicalId":18876,"journal":{"name":"Naunyn-Schmiedeberg's archives of pharmacology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naunyn-Schmiedeberg's archives of pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00210-025-04357-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Stroke is one of the leading causes of disability and mortality worldwide, with ischemic stroke representing the most prevalent and devastating form. This review offers an in-depth exploration of the critical role of N-Methyl-D-Aspartate Receptor (NMDAR) signaling in mediating the brain's response to ischemic injury. NMDAR activation triggers glutamate excitotoxicity, setting off a cascade of neurotoxic events that lead to mitochondrial dysfunction and the generation of reactive oxygen species (ROS). These damaging processes not only intensify neuronal injury but also activate apoptotic pathways, including p53-mediated and Notch signaling. Furthermore, the review highlights necroptosis as a key cell death mechanism in ischemic injury and examines the subsequent disruption of the blood-brain barrier (BBB), which exacerbates brain damage. In the context of neuroprotective signaling, we explore the distinct roles of synaptic and extrasynaptic NMDAR activation, neurotrophic factor-mediated signaling, and the intricate crosstalk between neurotoxic and neuroprotective pathways. This review also explores novel hypotheses and emerging perspectives in NMDAR-mediated ischemic stroke, highlighting potential mechanisms and therapeutic implications. Additionally, it covers cutting-edge experimental approaches to investigate NMDAR function in stroke and provides critical insights into conflicting findings in NMDAR research, addressing key controversies and their impact on future studies. Therapeutic strategies targeting ischemic stroke are critically examined, with an emphasis on potential interventions that could mitigate the effects of ischemia. The review also highlights ongoing clinical trials investigating novel therapeutic approaches and outlines the future direction of ischemic stroke therapy. This comprehensive review offers a deep understanding of the complex molecular mechanisms involved in ischemic stroke via NMDAR and provides valuable insights into the promising therapeutic avenues that could lead to more effective treatments.
期刊介绍:
Naunyn-Schmiedeberg''s Archives of Pharmacology was founded in 1873 by B. Naunyn, O. Schmiedeberg and E. Klebs as Archiv für experimentelle Pathologie und Pharmakologie, is the offical journal of the German Society of Experimental and Clinical Pharmacology and Toxicology (Deutsche Gesellschaft für experimentelle und klinische Pharmakologie und Toxikologie, DGPT) and the Sphingolipid Club. The journal publishes invited reviews, original articles, short communications and meeting reports and appears monthly. Naunyn-Schmiedeberg''s Archives of Pharmacology welcomes manuscripts for consideration of publication that report new and significant information on drug action and toxicity of chemical compounds. Thus, its scope covers all fields of experimental and clinical pharmacology as well as toxicology and includes studies in the fields of neuropharmacology and cardiovascular pharmacology as well as those describing drug actions at the cellular, biochemical and molecular levels. Moreover, submission of clinical trials with healthy volunteers or patients is encouraged. Short communications provide a means for rapid publication of significant findings of current interest that represent a conceptual advance in the field.