Sonodynamic therapy-boosted biomimetic nanoplatform targets ferroptosis and CD47 as vulnerabilities for cancer immunotherapy.

IF 10.6 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Haiqin Liao, Mingyu Chen, Zhipeng Liao, Yi Luo, Sijie Chen, Wanlin Tan, Long Wang, Chengcheng Niu
{"title":"Sonodynamic therapy-boosted biomimetic nanoplatform targets ferroptosis and CD47 as vulnerabilities for cancer immunotherapy.","authors":"Haiqin Liao, Mingyu Chen, Zhipeng Liao, Yi Luo, Sijie Chen, Wanlin Tan, Long Wang, Chengcheng Niu","doi":"10.1186/s12951-025-03485-w","DOIUrl":null,"url":null,"abstract":"<p><p>The efficacy of cancer immunotherapy is frequently hindered by the immunosuppressive \"cold\" tumor microenvironment. Inducing immunogenic cell death (ICD) may address this limitation. Ferroptosis, a form of ICD characterized by iron-dependent lipid peroxidation, has gained attention as a therapeutic target due to its inherent or therapy-induced susceptibility in refractory cancers and resistant tumor microenvironments. CD47, overexpressed on tumor cell membranes, enables immune evasion by suppressing macrophage-mediated surveillance, positioning it as a promising immune checkpoint target for macrophage-driven immunotherapy. Combining ferroptosis induction with CD47 blockade represents a strategic approach to enhance therapeutic outcomes. In this study, we developed a biomimetic nanoplatform-IR780/MnO<sub>2</sub>@PLGA@cell membrane-PEP20 nanoparticles-featuring a shell derived from 4T1 cell membranes conjugated with the CD47-inhibitory peptide PEP20. This design enables tumor-targeted delivery while enhancing macrophage phagocytosis of tumor cells. The MnO<sub>2</sub> core depletes intra-tumoral glutathione, downregulating glutathione peroxidase 4 and accumulating lipid peroxides to trigger ferroptosis. Concurrently, the ultrasound-responsive agent IR780 generates singlet oxygen under ultrasound irradiation, amplifying ferroptosis via oxidative stress. The resultant reactive oxygen species drive M2-to-M1 macrophage repolarization. Ferroptosis-mediated ICD further stimulates dendritic cell antigen presentation, activates cytotoxic T-cell immunity, and establishes durable immune memory. By exploiting tumor defense mechanisms as therapeutic vulnerabilities, this nanoplatform offers an innovative strategy for refractory cancer treatment.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"432"},"PeriodicalIF":10.6000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-025-03485-w","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The efficacy of cancer immunotherapy is frequently hindered by the immunosuppressive "cold" tumor microenvironment. Inducing immunogenic cell death (ICD) may address this limitation. Ferroptosis, a form of ICD characterized by iron-dependent lipid peroxidation, has gained attention as a therapeutic target due to its inherent or therapy-induced susceptibility in refractory cancers and resistant tumor microenvironments. CD47, overexpressed on tumor cell membranes, enables immune evasion by suppressing macrophage-mediated surveillance, positioning it as a promising immune checkpoint target for macrophage-driven immunotherapy. Combining ferroptosis induction with CD47 blockade represents a strategic approach to enhance therapeutic outcomes. In this study, we developed a biomimetic nanoplatform-IR780/MnO2@PLGA@cell membrane-PEP20 nanoparticles-featuring a shell derived from 4T1 cell membranes conjugated with the CD47-inhibitory peptide PEP20. This design enables tumor-targeted delivery while enhancing macrophage phagocytosis of tumor cells. The MnO2 core depletes intra-tumoral glutathione, downregulating glutathione peroxidase 4 and accumulating lipid peroxides to trigger ferroptosis. Concurrently, the ultrasound-responsive agent IR780 generates singlet oxygen under ultrasound irradiation, amplifying ferroptosis via oxidative stress. The resultant reactive oxygen species drive M2-to-M1 macrophage repolarization. Ferroptosis-mediated ICD further stimulates dendritic cell antigen presentation, activates cytotoxic T-cell immunity, and establishes durable immune memory. By exploiting tumor defense mechanisms as therapeutic vulnerabilities, this nanoplatform offers an innovative strategy for refractory cancer treatment.

声动力疗法增强的仿生纳米平台靶向铁下垂和CD47作为癌症免疫治疗的脆弱性。
肿瘤免疫治疗的效果经常受到免疫抑制的“冷”肿瘤微环境的阻碍。诱导免疫原性细胞死亡(ICD)可以解决这一限制。铁下沉是一种以铁依赖性脂质过氧化为特征的ICD,由于其在难治性癌症和耐药肿瘤微环境中固有或治疗诱导的易感性,作为一种治疗靶点而受到关注。CD47在肿瘤细胞膜上过表达,通过抑制巨噬细胞介导的监视来实现免疫逃避,使其成为巨噬细胞驱动免疫治疗的一个有希望的免疫检查点靶点。结合铁下垂诱导和CD47阻断是提高治疗效果的一种战略方法。在这项研究中,我们开发了一种仿生纳米平台- ir780 /MnO2@PLGA@细胞膜-PEP20纳米颗粒-其外壳来源于4T1细胞膜,结合了cd47抑制肽PEP20。这种设计可以实现肿瘤靶向递送,同时增强巨噬细胞对肿瘤细胞的吞噬。MnO2核心消耗肿瘤内谷胱甘肽,下调谷胱甘肽过氧化物酶4并积累脂质过氧化物,从而引发铁下垂。同时,超声应答剂IR780在超声照射下产生单线态氧,通过氧化应激放大铁下沉。由此产生的活性氧驱动m2到m1的巨噬细胞复极化。死铁介导的ICD进一步刺激树突状细胞抗原呈递,激活细胞毒性t细胞免疫,并建立持久的免疫记忆。通过利用肿瘤防御机制作为治疗漏洞,该纳米平台为难治性癌症治疗提供了一种创新策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nanobiotechnology
Journal of Nanobiotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
13.90
自引率
4.90%
发文量
493
审稿时长
16 weeks
期刊介绍: Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信