Concepción Ávila, María Teresa Llebrés, Francisco M Cánovas, Vanessa Castro-Rodríguez
{"title":"Arginine, a key amino acid for nitrogen nutrition and metabolism of forest trees.","authors":"Concepción Ávila, María Teresa Llebrés, Francisco M Cánovas, Vanessa Castro-Rodríguez","doi":"10.1093/jxb/eraf260","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the extraordinary significance of forests from an environmental, economic, and social perspectives, our understanding of the mechanisms underlying the growth, development and productivity of forest trees remains limited compared to crop plants mainly due to their perennial growth and recalcitrance to molecular analysis. Amino acids and peptides are key nitrogen (N) sources available in the soil for tree nutrition. Furthermore, when excess N (organic or inorganic) is available, trees can assimilate and store it directly as free arginine, the amino acid with the highest N content, or as a constituent of storage proteins in vegetative and reproductive organs. Arginine is, therefore, of paramount importance in N metabolism, and studying its biosynthesis and metabolic utilization is crucial for understanding N homeostasis in forest trees. This work reviews several aspects of arginine biochemistry and molecular biology in woody plants, including its transport, storage, and mobilization, as well as the enzymes involved in its biosynthesis and their subcellular distribution. Arginine biosynthesis is allosterically controlled by pathway's end-product, and increased glutamine levels act as a signal of N abundance, triggering a response that enhances flux through the pathway, favoring N storage. Additionally, this review discusses the molecular regulation of arginine biosynthesis at both transcriptional and post-transcriptional levels, whit an emphasis on key processes such as embryogenesis and N recycling.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jxb/eraf260","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Despite the extraordinary significance of forests from an environmental, economic, and social perspectives, our understanding of the mechanisms underlying the growth, development and productivity of forest trees remains limited compared to crop plants mainly due to their perennial growth and recalcitrance to molecular analysis. Amino acids and peptides are key nitrogen (N) sources available in the soil for tree nutrition. Furthermore, when excess N (organic or inorganic) is available, trees can assimilate and store it directly as free arginine, the amino acid with the highest N content, or as a constituent of storage proteins in vegetative and reproductive organs. Arginine is, therefore, of paramount importance in N metabolism, and studying its biosynthesis and metabolic utilization is crucial for understanding N homeostasis in forest trees. This work reviews several aspects of arginine biochemistry and molecular biology in woody plants, including its transport, storage, and mobilization, as well as the enzymes involved in its biosynthesis and their subcellular distribution. Arginine biosynthesis is allosterically controlled by pathway's end-product, and increased glutamine levels act as a signal of N abundance, triggering a response that enhances flux through the pathway, favoring N storage. Additionally, this review discusses the molecular regulation of arginine biosynthesis at both transcriptional and post-transcriptional levels, whit an emphasis on key processes such as embryogenesis and N recycling.
期刊介绍:
The Journal of Experimental Botany publishes high-quality primary research and review papers in the plant sciences. These papers cover a range of disciplines from molecular and cellular physiology and biochemistry through whole plant physiology to community physiology.
Full-length primary papers should contribute to our understanding of how plants develop and function, and should provide new insights into biological processes. The journal will not publish purely descriptive papers or papers that report a well-known process in a species in which the process has not been identified previously. Articles should be concise and generally limited to 10 printed pages.