Vittorio Lippi, Christoph Maurer, Christian Haverkamp, Stefan Kammermeier
{"title":"Head posture control under perturbed conditions in progressive supranuclear palsy patients.","authors":"Vittorio Lippi, Christoph Maurer, Christian Haverkamp, Stefan Kammermeier","doi":"10.3389/fnsys.2025.1466809","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>In neurodegenerative brain diseases like Progressive Supranuclear Palsy (PSP), clinical studies underscore the crucial role of head motion deficits. Similarly, advanced stage Idiopathic Parkinson's disease (IPD) is known to display significantly altered posture control and balance patterns involving the head segment.</p><p><strong>Methods: </strong>This study investigates the relative differences in head control during a perturbed upright stance paradigm between patients affected by PSP and IPD, compared to healthy control subjects using dynamic system modeling. The resulting neural model underlines how PSP primarily affects head control, whereas IPD primarily affects the control of the whole body's center of mass. A neck control model, based on the hypothesis of modular posture control, is proposed to emulate the PSP data in particular.</p><p><strong>Results: </strong>A larger passive stiffness was observed for both groups of patients, with eyes closed, suggesting that the head moves together with the trunk. With eyes open, the active proportional gain KP is relatively larger in all cases, indicating that the head is directed closer to the vertical by the visual contribution. Since this was held for all investigated groups, findings support the notion of intact visual contribution to posture control among PSP and IPD despite the impaired supranuclear eye guidance among PSP.</p><p><strong>Discussion: </strong>The proposed neural model's characteristics will aid in future patient data analysis, disease progression monitoring, and possible modulation of disease-specific features through therapeutic intervention. For engineering and robotics implementations, uses for strengthened resilience of head stabilization are discussed.</p>","PeriodicalId":12649,"journal":{"name":"Frontiers in Systems Neuroscience","volume":"19 ","pages":"1466809"},"PeriodicalIF":3.1000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12146403/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Systems Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnsys.2025.1466809","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: In neurodegenerative brain diseases like Progressive Supranuclear Palsy (PSP), clinical studies underscore the crucial role of head motion deficits. Similarly, advanced stage Idiopathic Parkinson's disease (IPD) is known to display significantly altered posture control and balance patterns involving the head segment.
Methods: This study investigates the relative differences in head control during a perturbed upright stance paradigm between patients affected by PSP and IPD, compared to healthy control subjects using dynamic system modeling. The resulting neural model underlines how PSP primarily affects head control, whereas IPD primarily affects the control of the whole body's center of mass. A neck control model, based on the hypothesis of modular posture control, is proposed to emulate the PSP data in particular.
Results: A larger passive stiffness was observed for both groups of patients, with eyes closed, suggesting that the head moves together with the trunk. With eyes open, the active proportional gain KP is relatively larger in all cases, indicating that the head is directed closer to the vertical by the visual contribution. Since this was held for all investigated groups, findings support the notion of intact visual contribution to posture control among PSP and IPD despite the impaired supranuclear eye guidance among PSP.
Discussion: The proposed neural model's characteristics will aid in future patient data analysis, disease progression monitoring, and possible modulation of disease-specific features through therapeutic intervention. For engineering and robotics implementations, uses for strengthened resilience of head stabilization are discussed.
期刊介绍:
Frontiers in Systems Neuroscience publishes rigorously peer-reviewed research that advances our understanding of whole systems of the brain, including those involved in sensation, movement, learning and memory, attention, reward, decision-making, reasoning, executive functions, and emotions.