Microspheres for 3D bioprinting: a review of fabrication methods and applications.

IF 4.8 3区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Frontiers in Bioengineering and Biotechnology Pub Date : 2025-05-26 eCollection Date: 2025-01-01 DOI:10.3389/fbioe.2025.1551199
Dmitri Karaman, Kira Williams, Jolene Phelps, Fynn La Boucan, Gretchen Lewandowski, Kerrin O'Grady, Bosco Yu, Stephanie M Willerth
{"title":"Microspheres for 3D bioprinting: a review of fabrication methods and applications.","authors":"Dmitri Karaman, Kira Williams, Jolene Phelps, Fynn La Boucan, Gretchen Lewandowski, Kerrin O'Grady, Bosco Yu, Stephanie M Willerth","doi":"10.3389/fbioe.2025.1551199","DOIUrl":null,"url":null,"abstract":"<p><p>Bioprinting incorporates printable biomaterials into 3D printing to create intricate tissues that maintain a defined 3D structure while supporting the survival and function of relevant cell types. A major challenge in 3D bioprinting is tuning material properties to ensure compatibility with different types of cells, while accurately mimicking the physiological microenvironment. Developing novel bioinks tailored to specific applications can help address this challenge by combining various materials and additives to tune the bioink formulation. Microspheres - small spherical particles - can incorporate drugs or growth factors to enable their controlled release, encapsulate cells to provide protection during printing, and provide structural reinforcement to tune mechanical properties and enable complex architectures. The particles range in size from 1 to 1000 μm and can be tuned to meet desired functions by optimizing their mode of production and the materials used for fabrication. This review presents an overview of microsphere production methods and considerations for optimizing the production process. It then summarizes how microspheres have been used to date in bioprinting applications. Finally, the existing challenges associated with the creation and use of microspheres are discussed along with avenues for future research.</p>","PeriodicalId":12444,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":"13 ","pages":"1551199"},"PeriodicalIF":4.8000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12146379/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Bioengineering and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fbioe.2025.1551199","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Bioprinting incorporates printable biomaterials into 3D printing to create intricate tissues that maintain a defined 3D structure while supporting the survival and function of relevant cell types. A major challenge in 3D bioprinting is tuning material properties to ensure compatibility with different types of cells, while accurately mimicking the physiological microenvironment. Developing novel bioinks tailored to specific applications can help address this challenge by combining various materials and additives to tune the bioink formulation. Microspheres - small spherical particles - can incorporate drugs or growth factors to enable their controlled release, encapsulate cells to provide protection during printing, and provide structural reinforcement to tune mechanical properties and enable complex architectures. The particles range in size from 1 to 1000 μm and can be tuned to meet desired functions by optimizing their mode of production and the materials used for fabrication. This review presents an overview of microsphere production methods and considerations for optimizing the production process. It then summarizes how microspheres have been used to date in bioprinting applications. Finally, the existing challenges associated with the creation and use of microspheres are discussed along with avenues for future research.

用于生物3D打印的微球:制备方法和应用综述。
生物打印将可打印的生物材料整合到3D打印中,以创建复杂的组织,保持定义的3D结构,同时支持相关细胞类型的存活和功能。3D生物打印的一个主要挑战是调整材料特性,以确保与不同类型细胞的兼容性,同时准确地模拟生理微环境。开发适合特定应用的新型生物墨水可以通过结合各种材料和添加剂来调整生物墨水配方来帮助解决这一挑战。微球-小的球形颗粒-可以结合药物或生长因子以实现其控制释放,封装细胞以在打印过程中提供保护,并提供结构加固以调整机械性能并实现复杂的结构。颗粒的尺寸范围从1到1000 μm,可以通过优化其生产方式和制造材料来调整以满足所需的功能。本文综述了微球生产方法和优化生产工艺的注意事项。然后总结了迄今为止微球在生物打印中的应用。最后,讨论了与微球的创造和使用相关的现有挑战以及未来研究的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Bioengineering and Biotechnology
Frontiers in Bioengineering and Biotechnology Chemical Engineering-Bioengineering
CiteScore
8.30
自引率
5.30%
发文量
2270
审稿时长
12 weeks
期刊介绍: The translation of new discoveries in medicine to clinical routine has never been easy. During the second half of the last century, thanks to the progress in chemistry, biochemistry and pharmacology, we have seen the development and the application of a large number of drugs and devices aimed at the treatment of symptoms, blocking unwanted pathways and, in the case of infectious diseases, fighting the micro-organisms responsible. However, we are facing, today, a dramatic change in the therapeutic approach to pathologies and diseases. Indeed, the challenge of the present and the next decade is to fully restore the physiological status of the diseased organism and to completely regenerate tissue and organs when they are so seriously affected that treatments cannot be limited to the repression of symptoms or to the repair of damage. This is being made possible thanks to the major developments made in basic cell and molecular biology, including stem cell science, growth factor delivery, gene isolation and transfection, the advances in bioengineering and nanotechnology, including development of new biomaterials, biofabrication technologies and use of bioreactors, and the big improvements in diagnostic tools and imaging of cells, tissues and organs. In today`s world, an enhancement of communication between multidisciplinary experts, together with the promotion of joint projects and close collaborations among scientists, engineers, industry people, regulatory agencies and physicians are absolute requirements for the success of any attempt to develop and clinically apply a new biological therapy or an innovative device involving the collective use of biomaterials, cells and/or bioactive molecules. “Frontiers in Bioengineering and Biotechnology” aspires to be a forum for all people involved in the process by bridging the gap too often existing between a discovery in the basic sciences and its clinical application.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信