{"title":"Advances of RARα fusion genes in acute promyelocytic leukemia.","authors":"Ao Zhang, Shaowei Qiu","doi":"10.1016/j.exphem.2025.104822","DOIUrl":null,"url":null,"abstract":"<p><p>Retinoic acid receptorα (RARα) is a ligand-dependent transcription factor that dimerizes with retinoid X receptor α (RXRα) to activate target gene promoters, playing a critical role in normal hematopoiesis and granulocyte differentiation. The translocation of chromosomes 15 and 17 generates the PML-RARA fusion gene, the master driver of acute promyelocytic leukemia (APL). The PML-RARα oncoprotein exerts two major effects: transcriptional repression and disruption of PML function. The introduction of all-trans retinoic acid (ATRA) and arsenic trioxide (ATO) has significantly improved the complete remission rate in APL, making it a highly treatable disease. However, resistance to ATRA/ATO and the emergence of variant fusion genes remain significant challenges to improving APL prognosis. This review provides an overview of the physiological role of retinoid nuclear receptor signaling in hematopoiesis, the pathological mechanisms of PML-RARα in APL, the pharmacological effects of ATRA/ATO, and the variant translocations identified in APL. We aim to provide innovative research perspectives and insights that may be applicable to other hematopoietic malignancies.</p>","PeriodicalId":12202,"journal":{"name":"Experimental hematology","volume":" ","pages":"104822"},"PeriodicalIF":2.5000,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental hematology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.exphem.2025.104822","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Retinoic acid receptorα (RARα) is a ligand-dependent transcription factor that dimerizes with retinoid X receptor α (RXRα) to activate target gene promoters, playing a critical role in normal hematopoiesis and granulocyte differentiation. The translocation of chromosomes 15 and 17 generates the PML-RARA fusion gene, the master driver of acute promyelocytic leukemia (APL). The PML-RARα oncoprotein exerts two major effects: transcriptional repression and disruption of PML function. The introduction of all-trans retinoic acid (ATRA) and arsenic trioxide (ATO) has significantly improved the complete remission rate in APL, making it a highly treatable disease. However, resistance to ATRA/ATO and the emergence of variant fusion genes remain significant challenges to improving APL prognosis. This review provides an overview of the physiological role of retinoid nuclear receptor signaling in hematopoiesis, the pathological mechanisms of PML-RARα in APL, the pharmacological effects of ATRA/ATO, and the variant translocations identified in APL. We aim to provide innovative research perspectives and insights that may be applicable to other hematopoietic malignancies.
期刊介绍:
Experimental Hematology publishes new findings, methodologies, reviews and perspectives in all areas of hematology and immune cell formation on a monthly basis that may include Special Issues on particular topics of current interest. The overall goal is to report new insights into how normal blood cells are produced, how their production is normally regulated, mechanisms that contribute to hematological diseases and new approaches to their treatment. Specific topics may include relevant developmental and aging processes, stem cell biology, analyses of intrinsic and extrinsic regulatory mechanisms, in vitro behavior of primary cells, clonal tracking, molecular and omics analyses, metabolism, epigenetics, bioengineering approaches, studies in model organisms, novel clinical observations, transplantation biology and new therapeutic avenues.