YuZhou Shen, Yan Dong Yao, Haili Li, Qian Zhang, Cheng Lin Wang, Li Hu, Ying Chun Hu, Mu Hu Chen
{"title":"Exploring the Mechanism of 2'-Hydroxychalcone Improving Copper Sulfate-Induced Inflammation in Zebrafish Through Network Pharmacology.","authors":"YuZhou Shen, Yan Dong Yao, Haili Li, Qian Zhang, Cheng Lin Wang, Li Hu, Ying Chun Hu, Mu Hu Chen","doi":"10.2147/DDDT.S510195","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>2'-Hydroxychalcone is universally acknowledged as a Chinese medicine monomer featured by aromatic properties, exhibiting anti-inflammatory and antioxidant effects. As a consequence, the study emphasis was placed on the anti-inflammatory, anti-oxidative and exercise capacity reinforcement effects of 2'-Hydroxychalcone on <i>Danio rerio</i> young fish under the action of CuSO4. Simultaneously, research endeavors were made to delve into how functional changes of target affect the inflammation and exercise capacity of <i>Danio rerio</i> young fish.</p><p><strong>Methods: </strong>Upon mating breeding, mature transgenic zebrafish and type AB zebrafish expressing red fluorescent macrophages T g (mpeg1:m Cherry) were cultured for 72 h and exposed to 12.5, 6.25, 3.14 and 0uM 2'-Hydroxychalcone, respectively, for three hours of pretreatment, which were subsequently incubated in CuSO4 at 20uM concentration for 12 h. A diverse array of test indexes was hereby utilized, encompassing the migration of red fluorescent-labeled macrophages, levels of inflammatory cytokines, zebrafish behavioral motility, and gene expression patterns correlated with oxidative stress and mitochondrial biogenesis, to assess the drugs' efficacy in alleviating inflammation.</p><p><strong>Results: </strong>2'-Hydroxychalcone anti-inflammatory target protein was found by adopting the bioinformatics method. Its effect on zebrafish behavior ability and the change trend of oxidative stress index were explored by changing the functional state of the target, such as changing the functional activity of the target by micro-injection technology. As indicated by the results, 2'-Hydroxychalcone could hinder the migration of macrophages and the mitochondrial function of CuSO4. Apart from that, 2'-Hydroxychalcone could lessen the level of inflammatory factors and oxidative stress. In addition, 2'-Hydroxychalcone conspicuously hindered the expression of interleukin-1β and interleukin-TNF-α, and lowered the expression of COX2. An augment in the levels of the target protein TRPV1 was observed during inflammation.</p><p><strong>Discussion: </strong>The experimental findings validated the anti-inflammatory and anti-oxidant activities of 2'-Hydroxychalcone and preliminarily confirmed the effect of the target on the behavior and oxidative stress level of zebrafish.</p>","PeriodicalId":11290,"journal":{"name":"Drug Design, Development and Therapy","volume":"19 ","pages":"4809-4834"},"PeriodicalIF":5.1000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12147463/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Design, Development and Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/DDDT.S510195","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: 2'-Hydroxychalcone is universally acknowledged as a Chinese medicine monomer featured by aromatic properties, exhibiting anti-inflammatory and antioxidant effects. As a consequence, the study emphasis was placed on the anti-inflammatory, anti-oxidative and exercise capacity reinforcement effects of 2'-Hydroxychalcone on Danio rerio young fish under the action of CuSO4. Simultaneously, research endeavors were made to delve into how functional changes of target affect the inflammation and exercise capacity of Danio rerio young fish.
Methods: Upon mating breeding, mature transgenic zebrafish and type AB zebrafish expressing red fluorescent macrophages T g (mpeg1:m Cherry) were cultured for 72 h and exposed to 12.5, 6.25, 3.14 and 0uM 2'-Hydroxychalcone, respectively, for three hours of pretreatment, which were subsequently incubated in CuSO4 at 20uM concentration for 12 h. A diverse array of test indexes was hereby utilized, encompassing the migration of red fluorescent-labeled macrophages, levels of inflammatory cytokines, zebrafish behavioral motility, and gene expression patterns correlated with oxidative stress and mitochondrial biogenesis, to assess the drugs' efficacy in alleviating inflammation.
Results: 2'-Hydroxychalcone anti-inflammatory target protein was found by adopting the bioinformatics method. Its effect on zebrafish behavior ability and the change trend of oxidative stress index were explored by changing the functional state of the target, such as changing the functional activity of the target by micro-injection technology. As indicated by the results, 2'-Hydroxychalcone could hinder the migration of macrophages and the mitochondrial function of CuSO4. Apart from that, 2'-Hydroxychalcone could lessen the level of inflammatory factors and oxidative stress. In addition, 2'-Hydroxychalcone conspicuously hindered the expression of interleukin-1β and interleukin-TNF-α, and lowered the expression of COX2. An augment in the levels of the target protein TRPV1 was observed during inflammation.
Discussion: The experimental findings validated the anti-inflammatory and anti-oxidant activities of 2'-Hydroxychalcone and preliminarily confirmed the effect of the target on the behavior and oxidative stress level of zebrafish.
期刊介绍:
Drug Design, Development and Therapy is an international, peer-reviewed, open access journal that spans the spectrum of drug design, discovery and development through to clinical applications.
The journal is characterized by the rapid reporting of high-quality original research, reviews, expert opinions, commentary and clinical studies in all therapeutic areas.
Specific topics covered by the journal include:
Drug target identification and validation
Phenotypic screening and target deconvolution
Biochemical analyses of drug targets and their pathways
New methods or relevant applications in molecular/drug design and computer-aided drug discovery*
Design, synthesis, and biological evaluation of novel biologically active compounds (including diagnostics or chemical probes)
Structural or molecular biological studies elucidating molecular recognition processes
Fragment-based drug discovery
Pharmaceutical/red biotechnology
Isolation, structural characterization, (bio)synthesis, bioengineering and pharmacological evaluation of natural products**
Distribution, pharmacokinetics and metabolic transformations of drugs or biologically active compounds in drug development
Drug delivery and formulation (design and characterization of dosage forms, release mechanisms and in vivo testing)
Preclinical development studies
Translational animal models
Mechanisms of action and signalling pathways
Toxicology
Gene therapy, cell therapy and immunotherapy
Personalized medicine and pharmacogenomics
Clinical drug evaluation
Patient safety and sustained use of medicines.