A Fuel-Driven Lock-and-Key System.

IF 2.5 4区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Shilin Zhang, Yanan Zhu, Hailiang Ni, Ping Hu, Yibin Sun
{"title":"A Fuel-Driven Lock-and-Key System.","authors":"Shilin Zhang, Yanan Zhu, Hailiang Ni, Ping Hu, Yibin Sun","doi":"10.1002/open.202500042","DOIUrl":null,"url":null,"abstract":"<p><p>This study introduces a fuel-driven lock-and-key system based on the interaction between crown ether and ammonium ion. In this simple model system, a key-like molecule with an amino group functions as the key, while 15-crown-5 serves as the lock. The chemical fuel, 2-cyano-2-phenylpropanoic acid, protonates the key, transitioning it from its deprotonated state to a protonated state, enabling it to bind to the lock. Upon fuel consumption, the protonated key reverts to its deprotonated state, causing the dissociation from the lock. This cycle is reversible and can be repeated at least three times. We hope that this intuitive lock-and-key system can provide a clearer understanding of energy-driven molecular recognition and offer valuable insights into the design and development of energy-driven molecular systems based on molecular recognition.</p>","PeriodicalId":9831,"journal":{"name":"ChemistryOpen","volume":" ","pages":"e2500042"},"PeriodicalIF":2.5000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemistryOpen","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/open.202500042","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces a fuel-driven lock-and-key system based on the interaction between crown ether and ammonium ion. In this simple model system, a key-like molecule with an amino group functions as the key, while 15-crown-5 serves as the lock. The chemical fuel, 2-cyano-2-phenylpropanoic acid, protonates the key, transitioning it from its deprotonated state to a protonated state, enabling it to bind to the lock. Upon fuel consumption, the protonated key reverts to its deprotonated state, causing the dissociation from the lock. This cycle is reversible and can be repeated at least three times. We hope that this intuitive lock-and-key system can provide a clearer understanding of energy-driven molecular recognition and offer valuable insights into the design and development of energy-driven molecular systems based on molecular recognition.

一种燃料驱动的锁-钥匙系统。
本文介绍了一种基于冠醚与铵离子相互作用的燃料驱动锁-钥匙系统。在这个简单的模型系统中,一个带有氨基的类似钥匙的分子充当钥匙,而15-crown-5充当锁。化学燃料,2-氰基-2-苯基丙烷酸,使钥匙质子化,使它从去质子化状态转变为质子化状态,使它能够与锁结合。在燃料消耗后,质子化的钥匙恢复到它的去质子化状态,导致与锁分离。这个循环是可逆的,至少可以重复三次。我们希望这一直观的锁钥系统能够为能量驱动分子识别提供更清晰的认识,并为基于分子识别的能量驱动分子系统的设计和开发提供有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemistryOpen
ChemistryOpen CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
4.80
自引率
4.30%
发文量
143
审稿时长
1 months
期刊介绍: ChemistryOpen is a multidisciplinary, gold-road open-access, international forum for the publication of outstanding Reviews, Full Papers, and Communications from all areas of chemistry and related fields. It is co-owned by 16 continental European Chemical Societies, who have banded together in the alliance called ChemPubSoc Europe for the purpose of publishing high-quality journals in the field of chemistry and its border disciplines. As some of the governments of the countries represented in ChemPubSoc Europe have strongly recommended that the research conducted with their funding is freely accessible for all readers (Open Access), ChemPubSoc Europe was concerned that no journal for which the ethical standards were monitored by a chemical society was available for such papers. ChemistryOpen fills this gap.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信