{"title":"Central lung cancer: improving operability assessment through 3D modelling.","authors":"Lubomír Tulinský, Ján Hrubovčák, Martin Pieš","doi":"10.1186/s12890-025-03759-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The objective of this study was to develop a novel method for creating highly detailed three-dimensional physical models of lung lobes, incorporating tumour morphology and surrounding structures, with the aim of improving the assessment of operability for central lung tumours.</p><p><strong>Case presentation: </strong>A method was developed that uses standard computed tomography (CT) scans to mark the desired structures and generate a three-dimensional image for physical model creation. The generated STL files can be seamlessly integrated into virtual reality, allowing the sharing of selected CT scan data. Our approach has been successfully integrated into clinical practice, enabling multidisciplinary teams to make informed decisions for patients with central lung tumours. We have reduced the preparation time of physical models from 100 h to 18 h.</p><p><strong>Conclusions: </strong>The novel method, which employs 3D printing technology, has enhanced the assessment of operability for central lung tumours, thereby facilitating more precise decisions regarding patient management. This innovative approach has the potential to enhance patient outcomes by reducing complications and optimizing treatment planning.</p>","PeriodicalId":9148,"journal":{"name":"BMC Pulmonary Medicine","volume":"25 1","pages":"287"},"PeriodicalIF":2.8000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12147340/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Pulmonary Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12890-025-03759-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The objective of this study was to develop a novel method for creating highly detailed three-dimensional physical models of lung lobes, incorporating tumour morphology and surrounding structures, with the aim of improving the assessment of operability for central lung tumours.
Case presentation: A method was developed that uses standard computed tomography (CT) scans to mark the desired structures and generate a three-dimensional image for physical model creation. The generated STL files can be seamlessly integrated into virtual reality, allowing the sharing of selected CT scan data. Our approach has been successfully integrated into clinical practice, enabling multidisciplinary teams to make informed decisions for patients with central lung tumours. We have reduced the preparation time of physical models from 100 h to 18 h.
Conclusions: The novel method, which employs 3D printing technology, has enhanced the assessment of operability for central lung tumours, thereby facilitating more precise decisions regarding patient management. This innovative approach has the potential to enhance patient outcomes by reducing complications and optimizing treatment planning.
期刊介绍:
BMC Pulmonary Medicine is an open access, peer-reviewed journal that considers articles on all aspects of the prevention, diagnosis and management of pulmonary and associated disorders, as well as related molecular genetics, pathophysiology, and epidemiology.