Byung Wook Lee, Hee Taek Kim, Hyun Gi Koh, Kyungjae Yu, Gaeul Kim, Yoon Jung Jung, Haeng-Geun Cha, Yunhee Jeong, Yung-Hun Yang, See-Hyoung Park, Kyungmoon Park
{"title":"Recombinant Escherichia coli-driven whole-cell bioconversion for selective 5-Aminopentanol production as a novel bioplastic monomer.","authors":"Byung Wook Lee, Hee Taek Kim, Hyun Gi Koh, Kyungjae Yu, Gaeul Kim, Yoon Jung Jung, Haeng-Geun Cha, Yunhee Jeong, Yung-Hun Yang, See-Hyoung Park, Kyungmoon Park","doi":"10.1186/s40643-025-00904-6","DOIUrl":null,"url":null,"abstract":"<p><p>5-Aminopentanol (5-AP) is a valuable amino alcohol with potential applications in polymer synthesis and bioplastics. Conventional production methods rely on petroleum-based feedstocks and metal catalysts, which raise environmental and sustainability concerns. In this study, a de novo biosynthetic pathway for 5-AP production from L-lysine was developed in Escherichia coli. The engineered pathway consisted of lysine decarboxylase 2 (LdcC), putrescine aminotransferase (PatA), and tested aldehyde reductase (YahK, YihU, YqhD). Among the tested reductases, aldehyde reductase exhibited the highest catalytic efficiency, producing 44.5 ± 2.6 mM of 5-AP (0.44 ± 0.03 mol<sub>5 - AP</sub>/mol<sub>l-lysine</sub>). The replacement of the expression system with a T7-based dual-plasmid platform, pET24ma::ldcC, and pCDFDuet-1::yqhD::patA co-transformed into E. coli, increased the production to 60.7 ± 5.8 mM, accompanied by reduced cadaverine accumulation. Further enhancement was achieved by increasing the gene dosage of PatA, leading to 68.5 ± 4.2 mM 5-AP and reduced by 40% in cadaverine levels. Cadaverine is a precursor in the production of 5-AP, and its accumulation is an important factor in the limitation of conversion to 5-AP. Intracellular cofactor regeneration is expected to cause an indirect supply of α-KG, a cofactor, to enhance conversion to 5-AP. To support intracellular cofactor regeneration, glucose supplementation and increased aeration were applied, resulting in a final titer of 78.5 ± 1.2 mM 5-AP and improved precursor utilization. This study is the first report of selective microbial 5-AP production and highlights the importance of PatA expression in pathway optimization. The newly established L-lysine (C6) valorization process which converts L-lysine to high-value materials such as 1,5-PDO, glutarate, and 5-AP offers a promising route for the sustainable biosynthesis of amino alcohols, laying the groundwork for future improvements through enzyme engineering and metabolic design.</p>","PeriodicalId":9067,"journal":{"name":"Bioresources and Bioprocessing","volume":"12 1","pages":"58"},"PeriodicalIF":5.1000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12149034/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresources and Bioprocessing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s40643-025-00904-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
5-Aminopentanol (5-AP) is a valuable amino alcohol with potential applications in polymer synthesis and bioplastics. Conventional production methods rely on petroleum-based feedstocks and metal catalysts, which raise environmental and sustainability concerns. In this study, a de novo biosynthetic pathway for 5-AP production from L-lysine was developed in Escherichia coli. The engineered pathway consisted of lysine decarboxylase 2 (LdcC), putrescine aminotransferase (PatA), and tested aldehyde reductase (YahK, YihU, YqhD). Among the tested reductases, aldehyde reductase exhibited the highest catalytic efficiency, producing 44.5 ± 2.6 mM of 5-AP (0.44 ± 0.03 mol5 - AP/moll-lysine). The replacement of the expression system with a T7-based dual-plasmid platform, pET24ma::ldcC, and pCDFDuet-1::yqhD::patA co-transformed into E. coli, increased the production to 60.7 ± 5.8 mM, accompanied by reduced cadaverine accumulation. Further enhancement was achieved by increasing the gene dosage of PatA, leading to 68.5 ± 4.2 mM 5-AP and reduced by 40% in cadaverine levels. Cadaverine is a precursor in the production of 5-AP, and its accumulation is an important factor in the limitation of conversion to 5-AP. Intracellular cofactor regeneration is expected to cause an indirect supply of α-KG, a cofactor, to enhance conversion to 5-AP. To support intracellular cofactor regeneration, glucose supplementation and increased aeration were applied, resulting in a final titer of 78.5 ± 1.2 mM 5-AP and improved precursor utilization. This study is the first report of selective microbial 5-AP production and highlights the importance of PatA expression in pathway optimization. The newly established L-lysine (C6) valorization process which converts L-lysine to high-value materials such as 1,5-PDO, glutarate, and 5-AP offers a promising route for the sustainable biosynthesis of amino alcohols, laying the groundwork for future improvements through enzyme engineering and metabolic design.
期刊介绍:
Bioresources and Bioprocessing (BIOB) is a peer-reviewed open access journal published under the brand SpringerOpen. BIOB aims at providing an international academic platform for exchanging views on and promoting research to support bioresource development, processing and utilization in a sustainable manner. As an application-oriented research journal, BIOB covers not only the application and management of bioresource technology but also the design and development of bioprocesses that will lead to new and sustainable production processes. BIOB publishes original and review articles on most topics relating to bioresource and bioprocess engineering, including: -Biochemical and microbiological engineering -Biocatalysis and biotransformation -Biosynthesis and metabolic engineering -Bioprocess and biosystems engineering -Bioenergy and biorefinery -Cell culture and biomedical engineering -Food, agricultural and marine biotechnology -Bioseparation and biopurification engineering -Bioremediation and environmental biotechnology