Manipulation of photon absorption cross-section areas and biomass productivity of unicellular algal bioreactors under continuous illumination.

IF 1.6 4区 医学 Q4 BIOPHYSICS
Biointerphases Pub Date : 2025-05-01 DOI:10.1116/6.0004490
Yair Zarmi
{"title":"Manipulation of photon absorption cross-section areas and biomass productivity of unicellular algal bioreactors under continuous illumination.","authors":"Yair Zarmi","doi":"10.1116/6.0004490","DOIUrl":null,"url":null,"abstract":"<p><p>Present knowledge regarding manipulation of photon absorption cross-sectional areas of unicellular algal cells and its effect on bioproductivity is limited and cannot be applied to large-scale biomass production. Expecting that in the future such knowledge will come forward, this paper discusses the effect of manipulation of the photon absorption cross-sectional area of the PS II chlorophyll antenna on bioproductivity of flat-plate bioreactors under continuous illumination. A simple model for biomass generation in flat-plate bioreactors is developed. Two cross-sectional manipulation procedures aimed at optimizing reactor productivity are discussed: (1) finding an optimal constant cross-sectional area and (2) finding an optimal cross-sectional area profile that varies with depth in the reactor. It is well known that at low culture-density, photon exploitation efficiency is high at low photon flux densities (linear part of a biomass P-I curve) and diminishes in inverse proportion to flux density at high fluxes. Consequently, if instead of irradiating a given area of a low-culture density by a high photon flux density, the total flux is spread over a larger reactor surface-area at low flux densities, productivity per 1 m2 of reactor surface increases. Here, it is shown that the same idea also applies to high-culture density reactors and that the effect can be amplified significantly through judicious manipulation of the photon absorption cross-sectional area of the antenna. Compared to usual \"natural\" reactors (photon absorption cross sections are ≈1 nm2), bioproductivity of reactors operating under optimized photon absorption cross-sectional area may be 2-4 times higher.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":"20 3","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biointerphases","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1116/6.0004490","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Present knowledge regarding manipulation of photon absorption cross-sectional areas of unicellular algal cells and its effect on bioproductivity is limited and cannot be applied to large-scale biomass production. Expecting that in the future such knowledge will come forward, this paper discusses the effect of manipulation of the photon absorption cross-sectional area of the PS II chlorophyll antenna on bioproductivity of flat-plate bioreactors under continuous illumination. A simple model for biomass generation in flat-plate bioreactors is developed. Two cross-sectional manipulation procedures aimed at optimizing reactor productivity are discussed: (1) finding an optimal constant cross-sectional area and (2) finding an optimal cross-sectional area profile that varies with depth in the reactor. It is well known that at low culture-density, photon exploitation efficiency is high at low photon flux densities (linear part of a biomass P-I curve) and diminishes in inverse proportion to flux density at high fluxes. Consequently, if instead of irradiating a given area of a low-culture density by a high photon flux density, the total flux is spread over a larger reactor surface-area at low flux densities, productivity per 1 m2 of reactor surface increases. Here, it is shown that the same idea also applies to high-culture density reactors and that the effect can be amplified significantly through judicious manipulation of the photon absorption cross-sectional area of the antenna. Compared to usual "natural" reactors (photon absorption cross sections are ≈1 nm2), bioproductivity of reactors operating under optimized photon absorption cross-sectional area may be 2-4 times higher.

连续光照下单细胞藻类生物反应器光子吸收截面面积和生物量生产力的调控。
目前关于单细胞藻类细胞的光子吸收横截面积的操纵及其对生物生产力的影响的知识是有限的,不能应用于大规模的生物质生产。本文讨论了在连续光照条件下,PS II叶绿素天线的光子吸收截面积对平板生物反应器生物生产力的影响。建立了一个简单的平板生物反应器生物质生成模型。本文讨论了两种旨在优化反应器生产率的横截操作方法:(1)找到最优的恒定横截面积;(2)找到随反应器深度变化的最优横截面积剖面。众所周知,在低培养密度下,光子利用效率在低光子通量密度(生物量P-I曲线的线性部分)下很高,在高通量下与通量密度成反比。因此,如果不以高光子通量密度照射低培养密度的给定区域,而是以低通量密度将总通量分布在较大的反应堆表面积上,则每1平方米反应堆表面的生产率将增加。本文表明,同样的思想也适用于高培养密度反应器,并且通过明智地操纵天线的光子吸收横截面积,可以显着放大这种效应。与通常的“天然”反应器(光子吸收截面≈1 nm2)相比,在优化光子吸收截面下运行的反应器的生物生产率可能高出2-4倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biointerphases
Biointerphases 生物-材料科学:生物材料
自引率
0.00%
发文量
35
期刊介绍: Biointerphases emphasizes quantitative characterization of biomaterials and biological interfaces. As an interdisciplinary journal, a strong foundation of chemistry, physics, biology, engineering, theory, and/or modelling is incorporated into originated articles, reviews, and opinionated essays. In addition to regular submissions, the journal regularly features In Focus sections, targeted on specific topics and edited by experts in the field. Biointerphases is an international journal with excellence in scientific peer-review. Biointerphases is indexed in PubMed and the Science Citation Index (Clarivate Analytics). Accepted papers appear online immediately after proof processing and are uploaded to key citation sources daily. The journal is based on a mixed subscription and open-access model: Typically, authors can publish without any page charges but if the authors wish to publish open access, they can do so for a modest fee. Topics include: bio-surface modification nano-bio interface protein-surface interactions cell-surface interactions in vivo and in vitro systems biofilms / biofouling biosensors / biodiagnostics bio on a chip coatings interface spectroscopy biotribology / biorheology molecular recognition ambient diagnostic methods interface modelling adhesion phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信