Microfluidics for protein interaction studies: current methods, challenges, and future perspectives.

IF 2.4 4区 生物学 Q3 BIOPHYSICS
Matthias M Schneider, Tuomas P J Knowles, Sandro Keller, Georg Krainer
{"title":"Microfluidics for protein interaction studies: current methods, challenges, and future perspectives.","authors":"Matthias M Schneider, Tuomas P J Knowles, Sandro Keller, Georg Krainer","doi":"10.1007/s00249-025-01763-x","DOIUrl":null,"url":null,"abstract":"<p><p>Proteins are the key molecular players of life, carrying out their functions through interactions. Microfluidic technologies have emerged as powerful tools for studying protein interactions with exquisite sensitivity, resolution, and throughput. In this review, we highlight recent advances in microfluidic approaches for protein interaction studies. We first explore continuous-flow microfluidics, which utilize diffusion-based techniques and electrophoretic methods, before examining the role of droplet microfluidics in probing protein interactions. We provide an overview of the diverse applications of these technologies in biophysical research, drug discovery, and clinical diagnostics. We conclude with a discussion of the potential of microfluidics for driving future innovations and emerging opportunities.</p>","PeriodicalId":548,"journal":{"name":"European Biophysics Journal","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Biophysics Journal","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1007/s00249-025-01763-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Proteins are the key molecular players of life, carrying out their functions through interactions. Microfluidic technologies have emerged as powerful tools for studying protein interactions with exquisite sensitivity, resolution, and throughput. In this review, we highlight recent advances in microfluidic approaches for protein interaction studies. We first explore continuous-flow microfluidics, which utilize diffusion-based techniques and electrophoretic methods, before examining the role of droplet microfluidics in probing protein interactions. We provide an overview of the diverse applications of these technologies in biophysical research, drug discovery, and clinical diagnostics. We conclude with a discussion of the potential of microfluidics for driving future innovations and emerging opportunities.

蛋白质相互作用的微流体研究:当前方法、挑战和未来展望。
蛋白质是生命的关键分子,通过相互作用实现其功能。微流体技术已成为研究蛋白质相互作用的强大工具,具有极高的灵敏度、分辨率和通量。在这篇综述中,我们重点介绍了用于蛋白质相互作用研究的微流体方法的最新进展。在研究液滴微流体在探测蛋白质相互作用中的作用之前,我们首先探索了连续流微流体,它利用基于扩散的技术和电泳方法。我们概述了这些技术在生物物理研究、药物发现和临床诊断中的各种应用。最后,我们讨论了微流体在推动未来创新和新兴机会方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
European Biophysics Journal
European Biophysics Journal 生物-生物物理
CiteScore
4.30
自引率
0.00%
发文量
43
审稿时长
6-12 weeks
期刊介绍: The journal publishes papers in the field of biophysics, which is defined as the study of biological phenomena by using physical methods and concepts. Original papers, reviews and Biophysics letters are published. The primary goal of this journal is to advance the understanding of biological structure and function by application of the principles of physical science, and by presenting the work in a biophysical context. Papers employing a distinctively biophysical approach at all levels of biological organisation will be considered, as will both experimental and theoretical studies. The criteria for acceptance are scientific content, originality and relevance to biological systems of current interest and importance. Principal areas of interest include: - Structure and dynamics of biological macromolecules - Membrane biophysics and ion channels - Cell biophysics and organisation - Macromolecular assemblies - Biophysical methods and instrumentation - Advanced microscopics - System dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信