Fabrication of Biocompatible Helical Fibers Using an Optical Vortex Beam.

IF 3.5 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Kenta Homma, Yoshihisa Matsumoto, Yasushi Tanimoto, Kyoko Masui, Chie Hosokawa, Takashige Omatsu, Michiya Matsusaki
{"title":"Fabrication of Biocompatible Helical Fibers Using an Optical Vortex Beam.","authors":"Kenta Homma, Yoshihisa Matsumoto, Yasushi Tanimoto, Kyoko Masui, Chie Hosokawa, Takashige Omatsu, Michiya Matsusaki","doi":"10.1002/asia.202500361","DOIUrl":null,"url":null,"abstract":"<p><p>Helical structures are a fundamental characteristic of biological tissues, yet helical biomaterial scaffolds remain underdeveloped. Optical vortex beams, a unique class of light with helical wavefronts, carry optical angular momentum (OAM). Interestingly, it has been discovered that the OAM of optical vortex beams twists the irradiated photocurable resins to form helical fiber structures. This phenomenon opens up new possibilities that optical vortex beams enable the creation of photopolymerized structures for tissue engineering scaffolds. However, the fabrication of helical fibers formed of biocompatible polymers has not been established yet. In this study, we successfully fabricated helical gel fibers using poly(ethylene glycol) (PEG), a representative biocompatible polymer, through photopolymerization with an optical vortex beam. The helical wavefront of the optical vortex beam enabled the creation of twisted PEG gel microscale fibers with minimal branching, likely due to the OAM transferred to the gel precursors during photopolymerization. In contrast, PEG gel microscale fibers fabricated using a Gaussian beam with a planar wavefront exhibited significant branching. These findings demonstrate the potential of optical vortex beams for fabricating helical structures with biocompatible polymers, offering a promising approach for applications such as helical tissue engineering.</p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":" ","pages":"e00361"},"PeriodicalIF":3.5000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - An Asian Journal","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1002/asia.202500361","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Helical structures are a fundamental characteristic of biological tissues, yet helical biomaterial scaffolds remain underdeveloped. Optical vortex beams, a unique class of light with helical wavefronts, carry optical angular momentum (OAM). Interestingly, it has been discovered that the OAM of optical vortex beams twists the irradiated photocurable resins to form helical fiber structures. This phenomenon opens up new possibilities that optical vortex beams enable the creation of photopolymerized structures for tissue engineering scaffolds. However, the fabrication of helical fibers formed of biocompatible polymers has not been established yet. In this study, we successfully fabricated helical gel fibers using poly(ethylene glycol) (PEG), a representative biocompatible polymer, through photopolymerization with an optical vortex beam. The helical wavefront of the optical vortex beam enabled the creation of twisted PEG gel microscale fibers with minimal branching, likely due to the OAM transferred to the gel precursors during photopolymerization. In contrast, PEG gel microscale fibers fabricated using a Gaussian beam with a planar wavefront exhibited significant branching. These findings demonstrate the potential of optical vortex beams for fabricating helical structures with biocompatible polymers, offering a promising approach for applications such as helical tissue engineering.

利用光学涡旋光束制备生物相容性螺旋纤维。
螺旋结构是生物组织的基本特征,但螺旋结构的生物材料支架尚不发达。光学涡旋光束是一类具有螺旋波前的独特光束,具有光学角动量(OAM)。有趣的是,已经发现光涡旋光束的OAM扭曲了辐照的光固化树脂,形成螺旋纤维结构。这一现象为光学涡旋光束创造用于组织工程支架的光聚合结构提供了新的可能性。然而,由生物相容性聚合物形成的螺旋纤维的制备尚未建立。在本研究中,我们成功地利用具有代表性的生物相容性聚合物聚乙二醇(PEG),通过光学涡旋光束的光聚合制备了螺旋状凝胶纤维。光学涡旋光束的螺旋波前使得扭曲的PEG凝胶微尺度纤维具有最小的分支,可能是由于在光聚合过程中OAM转移到凝胶前体。相比之下,使用平面波前高斯光束制备的PEG凝胶微尺度纤维表现出明显的分支。这些发现证明了光学涡旋光束用生物相容性聚合物制造螺旋结构的潜力,为螺旋组织工程等应用提供了一种有前途的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemistry - An Asian Journal
Chemistry - An Asian Journal 化学-化学综合
CiteScore
7.00
自引率
2.40%
发文量
535
审稿时长
1.3 months
期刊介绍: Chemistry—An Asian Journal is an international high-impact journal for chemistry in its broadest sense. The journal covers all aspects of chemistry from biochemistry through organic and inorganic chemistry to physical chemistry, including interdisciplinary topics. Chemistry—An Asian Journal publishes Full Papers, Communications, and Focus Reviews. A professional editorial team headed by Dr. Theresa Kueckmann and an Editorial Board (headed by Professor Susumu Kitagawa) ensure the highest quality of the peer-review process, the contents and the production of the journal. Chemistry—An Asian Journal is published on behalf of the Asian Chemical Editorial Society (ACES), an association of numerous Asian chemical societies, and supported by the Gesellschaft Deutscher Chemiker (GDCh, German Chemical Society), ChemPubSoc Europe, and the Federation of Asian Chemical Societies (FACS).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信