Unraveling the Hidden Pathway of Catalyst-Free Direct Photochemical Conversion of Sulfides to Sulfoxides: A Universal Pathway under UVA Radiation.

IF 4.8 2区 化学 Q2 CHEMISTRY, PHYSICAL
Shivendra Singh, Supritam Datta, Souvik Manna, Biswarup Pathak, Tushar Kanti Mukherjee
{"title":"Unraveling the Hidden Pathway of Catalyst-Free Direct Photochemical Conversion of Sulfides to Sulfoxides: A Universal Pathway under UVA Radiation.","authors":"Shivendra Singh, Supritam Datta, Souvik Manna, Biswarup Pathak, Tushar Kanti Mukherjee","doi":"10.1021/acs.jpclett.5c01122","DOIUrl":null,"url":null,"abstract":"<p><p>Selective conversion of sulfides to sulfoxides is an important class of chemical transformation that has enormous potential in medicinal chemistry. However, the primary process associated with photoexcitation during the direct photochemical conversion of sulfides to sulfoxides is poorly understood and misrepresented in the literature. Herein, we discover a hidden pathway responsible for the direct photochemical conversion of sulfides to sulfoxides in the absence of any catalysts under UVA illumination (λ<sub>ex</sub> = 370 nm). We show that this hidden pathway directly generates singlet oxygen (a<sup>1</sup>Δ<sub>g</sub>,<sup>1</sup>O<sub>2</sub>) via solvent-oxygen (X<sup>3</sup>∑<sub>g</sub><sup>-</sup>,<sup>3</sup>O<sub>2</sub>) charge transfer (CT) excitation in neat solvents under ambient conditions. Our findings reveal efficient and selective oxidation of sulfides to sulfoxides in the presence of <sup>1</sup>O<sub>2</sub> through the generation of persulfoxide intermediates. In addition, we found that the presence of a marginal amount of water favors faster kinetics and prevents overoxidation to sulfones due to the stabilization of the sulfoxide products via specific hydrogen-bonding interactions.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":" ","pages":"6106-6115"},"PeriodicalIF":4.8000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.5c01122","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Selective conversion of sulfides to sulfoxides is an important class of chemical transformation that has enormous potential in medicinal chemistry. However, the primary process associated with photoexcitation during the direct photochemical conversion of sulfides to sulfoxides is poorly understood and misrepresented in the literature. Herein, we discover a hidden pathway responsible for the direct photochemical conversion of sulfides to sulfoxides in the absence of any catalysts under UVA illumination (λex = 370 nm). We show that this hidden pathway directly generates singlet oxygen (a1Δg,1O2) via solvent-oxygen (X3g-,3O2) charge transfer (CT) excitation in neat solvents under ambient conditions. Our findings reveal efficient and selective oxidation of sulfides to sulfoxides in the presence of 1O2 through the generation of persulfoxide intermediates. In addition, we found that the presence of a marginal amount of water favors faster kinetics and prevents overoxidation to sulfones due to the stabilization of the sulfoxide products via specific hydrogen-bonding interactions.

Abstract Image

揭示无催化剂的硫化物直接光化学转化为亚砜的隐藏途径:UVA辐射下的普遍途径。
硫化物选择性转化为亚砜是一类重要的化学转化,在药物化学中具有巨大的潜力。然而,在硫化物到亚砜的直接光化学转化过程中,与光激发相关的主要过程在文献中被理解得很少和误解。在此,我们发现了在UVA光照下(λex = 370 nm),在没有任何催化剂的情况下,硫化物直接光化学转化为亚砜的隐藏途径。我们发现,在环境条件下,这个隐藏的途径通过溶剂-氧(X3∑g-,3O2)电荷转移(CT)激发在纯溶剂中直接产生单线态氧(a1Δg,1O2)。我们的研究结果揭示了在1O2存在下,通过生成过亚砜中间体,硫化物被有效和选择性地氧化为亚砜。此外,我们发现少量水的存在有利于更快的动力学,并通过特定的氢键相互作用稳定亚砜产物,从而防止砜的过度氧化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信