Probing Electrocatalytic Gas Evolution Reaction at Pt by Force Noise Measurements. Part 1. Hydrogen.

IF 4.8 2区 化学 Q2 CHEMISTRY, PHYSICAL
Nataraju Bodappa, Zixiao Zhang, Ramin Yazdaanpanah, Wyatt Behn, Kirk H Bevan, Gregory Jerkiewicz, Peter Grutter
{"title":"Probing Electrocatalytic Gas Evolution Reaction at Pt by Force Noise Measurements. Part 1. Hydrogen.","authors":"Nataraju Bodappa, Zixiao Zhang, Ramin Yazdaanpanah, Wyatt Behn, Kirk H Bevan, Gregory Jerkiewicz, Peter Grutter","doi":"10.1021/acs.jpclett.5c00053","DOIUrl":null,"url":null,"abstract":"<p><p>Electrocatalytic processes occurring at a heterogeneous interface are complex, and their understanding at the molecular level remains challenging. Atomic force microscopy (AFM) can detect force interactions down to the atomic level, but so far it has been mainly used to obtain <i>in situ</i> images of electrocatalysts. Here, for the first time, we employ AFM to investigate gas evolution at a platinum ultramicroelectrode (Pt UME) under electrochemical conditions using force noise measurements. We detect excess force noise when individual H<sub>2</sub> gas bubble nucleation, growth, and detachment events occur at the Pt UME. Based on our <i>in situ</i> AFM, electrochemical, and optical microscopy analyses, we conclude that larger size H<sub>2</sub> gas bubbles remain pinned to the UME surface while smaller H<sub>2</sub> gas bubbles are released until an overpotential of -0.8 V vs RHE. This study demonstrates the viability of <i>in situ</i> AFM in studying gas evolution under electrocatalytic conditions and contributes to a mechanistic understanding of the H<sub>2</sub> gas bubble detachments during the hydrogen evolution reaction (HER).</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":" ","pages":"6015-6022"},"PeriodicalIF":4.8000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.5c00053","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Electrocatalytic processes occurring at a heterogeneous interface are complex, and their understanding at the molecular level remains challenging. Atomic force microscopy (AFM) can detect force interactions down to the atomic level, but so far it has been mainly used to obtain in situ images of electrocatalysts. Here, for the first time, we employ AFM to investigate gas evolution at a platinum ultramicroelectrode (Pt UME) under electrochemical conditions using force noise measurements. We detect excess force noise when individual H2 gas bubble nucleation, growth, and detachment events occur at the Pt UME. Based on our in situ AFM, electrochemical, and optical microscopy analyses, we conclude that larger size H2 gas bubbles remain pinned to the UME surface while smaller H2 gas bubbles are released until an overpotential of -0.8 V vs RHE. This study demonstrates the viability of in situ AFM in studying gas evolution under electrocatalytic conditions and contributes to a mechanistic understanding of the H2 gas bubble detachments during the hydrogen evolution reaction (HER).

Abstract Image

用力噪声测量法探测铂电催化释气反应。第1部分。氢。
发生在非均相界面上的电催化过程是复杂的,其在分子水平上的理解仍然具有挑战性。原子力显微镜(AFM)可以检测到原子水平上的力相互作用,但到目前为止,它主要用于获得电催化剂的原位图像。在这里,我们首次使用原子力显微镜研究电化学条件下铂超微电极(Pt UME)上的气体演化。当单个H2气泡成核,生长和脱离事件发生在Pt UME时,我们检测到多余的力噪声。基于我们的原位AFM、电化学和光学显微镜分析,我们得出结论,较大尺寸的氢气气泡被固定在UME表面,而较小的氢气气泡被释放,直到过电位达到-0.8 V vs RHE。本研究证明了原位AFM在电催化条件下研究析氢的可行性,并有助于理解析氢反应(HER)过程中H2气泡脱落的机理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信