Experimental and Computational Evaluation of Nicotinamide Cofactor Biomimetics.

IF 3.5 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Karissa C Kenney, Tyler P LaFortune, Sourav Majumdar, Edgar M Manriquez, Arjun S Pamidi, Courtnie S Kom, Jason E Garrido, Edgar S Villa, Filipp Furche, Gregory A Weiss
{"title":"Experimental and Computational Evaluation of Nicotinamide Cofactor Biomimetics.","authors":"Karissa C Kenney, Tyler P LaFortune, Sourav Majumdar, Edgar M Manriquez, Arjun S Pamidi, Courtnie S Kom, Jason E Garrido, Edgar S Villa, Filipp Furche, Gregory A Weiss","doi":"10.1021/acschembio.5c00174","DOIUrl":null,"url":null,"abstract":"<p><p>Oxidoreductase enzymes are widely used biocatalysts due to their high enantioselectivity and broad substrate compatibility in useful transformations. Many oxidoreductases require nicotinamide cofactors (i.e., NAD(P)H). To replace this costly natural cofactor, synthetic nicotinamide cofactor biomimetics (NCBs) offer different shapes, binding affinities, and reducing potentials that exceed the capabilities of wild-type NAD(P)H. However, the ill-defined structure-activity relationships (SARs) of various NCBs slow rationally guided innovation, such as customized reducing potentials. Here, we dissect two essential elements of NCB design, holding the nicotinamide invariant. First, the linker length between the nicotinamide and an unconjugated aromatic ring uncovered unexpected benefits to redox activity for two or three carbon linkers. Second, substitution on this unconjugated aryl group (Ring 2) might not be expected to affect activity. However, SAR trends demonstrate substantial benefits to reductive potential conferred by electron-donating functionalities on Ring 2. Furthermore, catalysis by two enzymes demonstrates enzyme-dependent tolerance or sensitivity to the NCB structures. Density functional theory (DFT) and computational modeling provide a theoretical framework to understand and build upon these observations. Ring 2 reaches up to the nicotinamide to stabilize its positive charge after oxidation through π-π stacking and charge transfer. Thus, the systematic examination of NCB's stability, electrochemical redox potentials, and kinetics uncovers trends for the improved design of NCBs.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acschembio.5c00174","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Oxidoreductase enzymes are widely used biocatalysts due to their high enantioselectivity and broad substrate compatibility in useful transformations. Many oxidoreductases require nicotinamide cofactors (i.e., NAD(P)H). To replace this costly natural cofactor, synthetic nicotinamide cofactor biomimetics (NCBs) offer different shapes, binding affinities, and reducing potentials that exceed the capabilities of wild-type NAD(P)H. However, the ill-defined structure-activity relationships (SARs) of various NCBs slow rationally guided innovation, such as customized reducing potentials. Here, we dissect two essential elements of NCB design, holding the nicotinamide invariant. First, the linker length between the nicotinamide and an unconjugated aromatic ring uncovered unexpected benefits to redox activity for two or three carbon linkers. Second, substitution on this unconjugated aryl group (Ring 2) might not be expected to affect activity. However, SAR trends demonstrate substantial benefits to reductive potential conferred by electron-donating functionalities on Ring 2. Furthermore, catalysis by two enzymes demonstrates enzyme-dependent tolerance or sensitivity to the NCB structures. Density functional theory (DFT) and computational modeling provide a theoretical framework to understand and build upon these observations. Ring 2 reaches up to the nicotinamide to stabilize its positive charge after oxidation through π-π stacking and charge transfer. Thus, the systematic examination of NCB's stability, electrochemical redox potentials, and kinetics uncovers trends for the improved design of NCBs.

烟酰胺辅助因子仿生的实验与计算评价。
氧化还原酶是一种广泛应用的生物催化剂,因其在有用转化中具有高对映选择性和广泛的底物相容性。许多氧化还原酶需要烟酰胺辅助因子(即NAD(P)H)。为了取代这种昂贵的天然辅因子,合成烟酰胺辅因子仿生学(NCBs)提供了不同的形状、结合亲和力和还原潜力,超过了野生型NAD(P)H的能力。然而,各种ncb的构效关系定义不清,阻碍了合理引导的创新,如定制化还原电位。在这里,我们剖析NCB设计的两个基本要素,保持烟酰胺不变。首先,烟酰胺和非共轭芳香环之间的连接体长度揭示了两个或三个碳连接体对氧化还原活性的意想不到的好处。其次,取代非共轭芳基(环2)可能不会影响活性。然而,SAR趋势表明环2上给电子官能团赋予的还原电位具有实质性的好处。此外,两种酶的催化表现出对NCB结构的酶依赖性耐受性或敏感性。密度泛函理论(DFT)和计算建模为理解和建立这些观察提供了理论框架。环2到达烟酰胺,通过π-π堆叠和电荷转移来稳定氧化后的正电荷。因此,对NCB的稳定性、电化学氧化还原电位和动力学的系统研究揭示了改进NCB设计的趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Chemical Biology
ACS Chemical Biology 生物-生化与分子生物学
CiteScore
7.50
自引率
5.00%
发文量
353
审稿时长
3.3 months
期刊介绍: ACS Chemical Biology provides an international forum for the rapid communication of research that broadly embraces the interface between chemistry and biology. The journal also serves as a forum to facilitate the communication between biologists and chemists that will translate into new research opportunities and discoveries. Results will be published in which molecular reasoning has been used to probe questions through in vitro investigations, cell biological methods, or organismic studies. We welcome mechanistic studies on proteins, nucleic acids, sugars, lipids, and nonbiological polymers. The journal serves a large scientific community, exploring cellular function from both chemical and biological perspectives. It is understood that submitted work is based upon original results and has not been published previously.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信