Two Stability Theorems for K ℓ + 1 r -Saturated Hypergraphs

IF 0.9 3区 数学 Q2 MATHEMATICS
Jianfeng Hou, Heng Li, Caihong Yang, Qinghou Zeng, Yixiao Zhang
{"title":"Two Stability Theorems for \n \n \n \n \n K\n \n ℓ\n +\n 1\n \n r\n \n \n \n -Saturated Hypergraphs","authors":"Jianfeng Hou,&nbsp;Heng Li,&nbsp;Caihong Yang,&nbsp;Qinghou Zeng,&nbsp;Yixiao Zhang","doi":"10.1002/jgt.23241","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ℱ</mi>\n </mrow>\n </mrow>\n </semantics></math> be a family of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n </mrow>\n </mrow>\n </semantics></math>-uniform hypergraphs (henceforth <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n </mrow>\n </mrow>\n </semantics></math>-graphs). An <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ℱ</mi>\n </mrow>\n </mrow>\n </semantics></math>-saturated <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n </mrow>\n </mrow>\n </semantics></math>-graph is a maximal <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n </mrow>\n </mrow>\n </semantics></math>-graph not containing any member of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ℱ</mi>\n </mrow>\n </mrow>\n </semantics></math> as a subgraph. For integers <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ℓ</mi>\n \n <mo>≥</mo>\n \n <mi>r</mi>\n \n <mo>≥</mo>\n \n <mn>2</mn>\n </mrow>\n </mrow>\n </semantics></math>, let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msubsup>\n <mi>K</mi>\n \n <mrow>\n <mi>ℓ</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mi>r</mi>\n </msubsup>\n </mrow>\n </mrow>\n </semantics></math> be the collection of all <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n </mrow>\n </mrow>\n </semantics></math>-graphs <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n </mrow>\n </mrow>\n </semantics></math> with at most <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mfenced>\n <mfrac>\n <mrow>\n <mi>ℓ</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mn>2</mn>\n </mfrac>\n </mfenced>\n </mrow>\n </mrow>\n </semantics></math> edges such that for some <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>ℓ</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </semantics></math>-set <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>S</mi>\n </mrow>\n </mrow>\n </semantics></math> every pair <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>{</mo>\n \n <mrow>\n <mi>u</mi>\n \n <mo>,</mo>\n \n <mi>v</mi>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n \n <mo>⊂</mo>\n \n <mi>S</mi>\n </mrow>\n </mrow>\n </semantics></math> is covered by an edge in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n </mrow>\n </mrow>\n </semantics></math>, and let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>T</mi>\n \n <mi>r</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>ℓ</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> be the complete <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ℓ</mi>\n </mrow>\n </mrow>\n </semantics></math>-partite <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n </mrow>\n </mrow>\n </semantics></math>-graph on <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n </semantics></math> vertices with no two part sizes differing by more than one. Let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>t</mi>\n \n <mi>r</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>ℓ</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> be the number of edges in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>T</mi>\n \n <mi>r</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>ℓ</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>. Our first result shows that for each <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ℓ</mi>\n \n <mo>≥</mo>\n \n <mi>r</mi>\n \n <mo>≥</mo>\n \n <mn>2</mn>\n </mrow>\n </mrow>\n </semantics></math> every <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msubsup>\n <mi>K</mi>\n \n <mrow>\n <mi>ℓ</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mi>r</mi>\n </msubsup>\n </mrow>\n </mrow>\n </semantics></math>-saturated <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n </mrow>\n </mrow>\n </semantics></math>-graph on <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n </semantics></math> vertices with <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>t</mi>\n \n <mi>r</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>ℓ</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mo>−</mo>\n \n <mi>o</mi>\n \n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>n</mi>\n \n <mrow>\n <mi>r</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n \n <mo>+</mo>\n \n <mn>1</mn>\n \n <mo>∕</mo>\n \n <mi>ℓ</mi>\n </mrow>\n </msup>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> edges contains a complete <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ℓ</mi>\n </mrow>\n </mrow>\n </semantics></math>-partite subgraph on <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>1</mn>\n \n <mo>−</mo>\n \n <mi>o</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mn>1</mn>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mi>n</mi>\n </mrow>\n </mrow>\n </semantics></math> vertices, which extends a stability theorem for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mrow>\n <mi>ℓ</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>-saturated graphs given by Popielarz, Sahasrabudhe, and Snyder. We also show that the bound is best possible. Our second result is motivated by a celebrated theorem of Andrásfai, Erdős, and Sós, which states that for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ℓ</mi>\n \n <mo>≥</mo>\n \n <mn>2</mn>\n </mrow>\n </mrow>\n </semantics></math> every <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mrow>\n <mi>ℓ</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>-free graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> on <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n </semantics></math> vertices with minimum degree <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>δ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>&gt;</mo>\n \n <mfrac>\n <mrow>\n <mn>3</mn>\n \n <mi>ℓ</mi>\n \n <mo>−</mo>\n \n <mn>4</mn>\n </mrow>\n \n <mrow>\n <mn>3</mn>\n \n <mi>ℓ</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n </mfrac>\n \n <mi>n</mi>\n </mrow>\n </mrow>\n </semantics></math> is <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ℓ</mi>\n </mrow>\n </mrow>\n </semantics></math>-partite. We give a hypergraph version of it. The <i>minimum positive co-degree</i> of an <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n </mrow>\n </mrow>\n </semantics></math>-graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ℋ</mi>\n </mrow>\n </mrow>\n </semantics></math>, denoted by <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msubsup>\n <mi>δ</mi>\n \n <mrow>\n <mi>r</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>+</mo>\n </msubsup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>ℋ</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>, is the maximum <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math> such that if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>S</mi>\n </mrow>\n </mrow>\n </semantics></math> is an <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>r</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>-set contained in an edge of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ℋ</mi>\n </mrow>\n </mrow>\n </semantics></math>, then <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>S</mi>\n </mrow>\n </mrow>\n </semantics></math> is contained in at least <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math> distinct edges of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ℋ</mi>\n </mrow>\n </mrow>\n </semantics></math>. Let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ℓ</mi>\n \n <mo>≥</mo>\n \n <mn>3</mn>\n </mrow>\n </mrow>\n </semantics></math> be an integer and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ℋ</mi>\n </mrow>\n </mrow>\n </semantics></math> be a <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msubsup>\n <mi>K</mi>\n \n <mrow>\n <mi>ℓ</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mn>3</mn>\n </msubsup>\n </mrow>\n </mrow>\n </semantics></math>-saturated 3-graph on <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n </semantics></math> vertices. We prove that if either <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ℓ</mi>\n \n <mo>≥</mo>\n \n <mn>4</mn>\n </mrow>\n </mrow>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msubsup>\n <mi>δ</mi>\n \n <mn>2</mn>\n \n <mo>+</mo>\n </msubsup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>ℋ</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>&gt;</mo>\n \n <mfrac>\n <mrow>\n <mn>3</mn>\n \n <mi>ℓ</mi>\n \n <mo>−</mo>\n \n <mn>7</mn>\n </mrow>\n \n <mrow>\n <mn>3</mn>\n \n <mi>ℓ</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n </mfrac>\n \n <mi>n</mi>\n </mrow>\n </mrow>\n </semantics></math>; or <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ℓ</mi>\n \n <mo>=</mo>\n \n <mn>3</mn>\n </mrow>\n </mrow>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msubsup>\n <mi>δ</mi>\n \n <mn>2</mn>\n \n <mo>+</mo>\n </msubsup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>ℋ</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>&gt;</mo>\n \n <mn>2</mn>\n \n <mi>n</mi>\n \n <mo>∕</mo>\n \n <mn>7</mn>\n </mrow>\n </mrow>\n </semantics></math>, then <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ℋ</mi>\n </mrow>\n </mrow>\n </semantics></math> is <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ℓ</mi>\n </mrow>\n </mrow>\n </semantics></math>-partite; and the bound is best possible. This is the first stability result on minimum positive co-degree for hypergraphs.</p>\n </div>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"109 4","pages":"492-504"},"PeriodicalIF":0.9000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23241","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let be a family of r -uniform hypergraphs (henceforth r -graphs). An -saturated r -graph is a maximal r -graph not containing any member of as a subgraph. For integers r 2 , let K + 1 r be the collection of all r -graphs F with at most + 1 2 edges such that for some ( + 1 ) -set S every pair { u , v } S is covered by an edge in F , and let T r ( n , ) be the complete -partite r -graph on n vertices with no two part sizes differing by more than one. Let t r ( n , ) be the number of edges in T r ( n , ) . Our first result shows that for each r 2 every K + 1 r -saturated r -graph on n vertices with t r ( n , ) o ( n r 1 + 1 ) edges contains a complete -partite subgraph on ( 1 o ( 1 ) ) n vertices, which extends a stability theorem for K + 1 -saturated graphs given by Popielarz, Sahasrabudhe, and Snyder. We also show that the bound is best possible. Our second result is motivated by a celebrated theorem of Andrásfai, Erdős, and Sós, which states that for 2 every K + 1 -free graph G on n vertices with minimum degree δ ( G ) > 3 4 3 1 n is -partite. We give a hypergraph version of it. The minimum positive co-degree of an r -graph , denoted by δ r 1 + ( ) , is the maximum k such that if S is an ( r 1 ) -set contained in an edge of , then S is contained in at least k distinct edges of . Let 3 be an integer and be a K + 1 3 -saturated 3-graph on n vertices. We prove that if either 4 and δ 2 + ( ) > 3 7 3 1 n ; or = 3 and δ 2 + ( ) > 2 n 7 , then is -partite; and the bound is best possible. This is the first stability result on minimum positive co-degree for hypergraphs.

k_1 + 1r -饱和超图的两个稳定性定理
设f是一个由r -一致超图(以下简称r -图)组成的族。饱和的r -图是一个极大的r -图,它不包含任何的作为子图。对于整数r≥2,设k1 + 1r是所有的集合r个图F,最多有r +有12条边,对于某个(r + 1) -set S每对{u,v}∧S被F中的一条边所覆盖;令T r (n)是上的完全的r -图N个顶点,两个部分的大小相差不超过1。 设t r (n)r()中边的个数N, N) 我们的第一个结果表明,对于每一个r≥2,每一个Kl + 1r -饱和r -图N个顶点t r (N)(r)−0 (n r−1 + 1∕1)条边在(1−0)上包含一个完备的l -部子图(1) n个顶点,它扩展了由Popielarz, Sahasrabudhe和Snyder给出的k_1 + 1饱和图的稳定性定理。我们也证明了边界是最佳可能的。 我们的第二个结果是由一个著名的定理Andrásfai, Erdős和Sós推动的,它说明了,当r≥2时,每K r +有n个最小度顶点的1自由图Gδ (G) &gt;3r−4 3r−1N是N -部。我们给出它的超图版本。r -图h的最小正共度,表示为δ r−1 + (h);最大k是否使得S是(r)−1)-包含在h的边中的集合,那么S至少包含在k条不同的边中。 设h≥3为整数,h为Kn个顶点上的3-饱和3-图。我们证明了如果r≥4和δ 2 +(h) &gt;3r−7 3r−1n ;或者是r = 3和δ 2 +(h) &gt;2 n∕7,则h是n -部的;这个边界是最好的。这是超图最小正共度的第一个稳定性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信