{"title":"Two Stability Theorems for \n \n \n \n \n K\n \n ℓ\n +\n 1\n \n r\n \n \n \n -Saturated Hypergraphs","authors":"Jianfeng Hou, Heng Li, Caihong Yang, Qinghou Zeng, Yixiao Zhang","doi":"10.1002/jgt.23241","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ℱ</mi>\n </mrow>\n </mrow>\n </semantics></math> be a family of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n </mrow>\n </mrow>\n </semantics></math>-uniform hypergraphs (henceforth <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n </mrow>\n </mrow>\n </semantics></math>-graphs). An <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ℱ</mi>\n </mrow>\n </mrow>\n </semantics></math>-saturated <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n </mrow>\n </mrow>\n </semantics></math>-graph is a maximal <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n </mrow>\n </mrow>\n </semantics></math>-graph not containing any member of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ℱ</mi>\n </mrow>\n </mrow>\n </semantics></math> as a subgraph. For integers <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ℓ</mi>\n \n <mo>≥</mo>\n \n <mi>r</mi>\n \n <mo>≥</mo>\n \n <mn>2</mn>\n </mrow>\n </mrow>\n </semantics></math>, let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msubsup>\n <mi>K</mi>\n \n <mrow>\n <mi>ℓ</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mi>r</mi>\n </msubsup>\n </mrow>\n </mrow>\n </semantics></math> be the collection of all <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n </mrow>\n </mrow>\n </semantics></math>-graphs <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n </mrow>\n </mrow>\n </semantics></math> with at most <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mfenced>\n <mfrac>\n <mrow>\n <mi>ℓ</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mn>2</mn>\n </mfrac>\n </mfenced>\n </mrow>\n </mrow>\n </semantics></math> edges such that for some <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>ℓ</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </semantics></math>-set <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>S</mi>\n </mrow>\n </mrow>\n </semantics></math> every pair <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>{</mo>\n \n <mrow>\n <mi>u</mi>\n \n <mo>,</mo>\n \n <mi>v</mi>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n \n <mo>⊂</mo>\n \n <mi>S</mi>\n </mrow>\n </mrow>\n </semantics></math> is covered by an edge in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n </mrow>\n </mrow>\n </semantics></math>, and let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>T</mi>\n \n <mi>r</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>ℓ</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> be the complete <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ℓ</mi>\n </mrow>\n </mrow>\n </semantics></math>-partite <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n </mrow>\n </mrow>\n </semantics></math>-graph on <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n </semantics></math> vertices with no two part sizes differing by more than one. Let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>t</mi>\n \n <mi>r</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>ℓ</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> be the number of edges in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>T</mi>\n \n <mi>r</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>ℓ</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>. Our first result shows that for each <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ℓ</mi>\n \n <mo>≥</mo>\n \n <mi>r</mi>\n \n <mo>≥</mo>\n \n <mn>2</mn>\n </mrow>\n </mrow>\n </semantics></math> every <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msubsup>\n <mi>K</mi>\n \n <mrow>\n <mi>ℓ</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mi>r</mi>\n </msubsup>\n </mrow>\n </mrow>\n </semantics></math>-saturated <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n </mrow>\n </mrow>\n </semantics></math>-graph on <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n </semantics></math> vertices with <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>t</mi>\n \n <mi>r</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>ℓ</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mo>−</mo>\n \n <mi>o</mi>\n \n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>n</mi>\n \n <mrow>\n <mi>r</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n \n <mo>+</mo>\n \n <mn>1</mn>\n \n <mo>∕</mo>\n \n <mi>ℓ</mi>\n </mrow>\n </msup>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> edges contains a complete <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ℓ</mi>\n </mrow>\n </mrow>\n </semantics></math>-partite subgraph on <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>1</mn>\n \n <mo>−</mo>\n \n <mi>o</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mn>1</mn>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mi>n</mi>\n </mrow>\n </mrow>\n </semantics></math> vertices, which extends a stability theorem for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mrow>\n <mi>ℓ</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>-saturated graphs given by Popielarz, Sahasrabudhe, and Snyder. We also show that the bound is best possible. Our second result is motivated by a celebrated theorem of Andrásfai, Erdős, and Sós, which states that for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ℓ</mi>\n \n <mo>≥</mo>\n \n <mn>2</mn>\n </mrow>\n </mrow>\n </semantics></math> every <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mrow>\n <mi>ℓ</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>-free graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> on <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n </semantics></math> vertices with minimum degree <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>δ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>></mo>\n \n <mfrac>\n <mrow>\n <mn>3</mn>\n \n <mi>ℓ</mi>\n \n <mo>−</mo>\n \n <mn>4</mn>\n </mrow>\n \n <mrow>\n <mn>3</mn>\n \n <mi>ℓ</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n </mfrac>\n \n <mi>n</mi>\n </mrow>\n </mrow>\n </semantics></math> is <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ℓ</mi>\n </mrow>\n </mrow>\n </semantics></math>-partite. We give a hypergraph version of it. The <i>minimum positive co-degree</i> of an <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n </mrow>\n </mrow>\n </semantics></math>-graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ℋ</mi>\n </mrow>\n </mrow>\n </semantics></math>, denoted by <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msubsup>\n <mi>δ</mi>\n \n <mrow>\n <mi>r</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>+</mo>\n </msubsup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>ℋ</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>, is the maximum <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math> such that if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>S</mi>\n </mrow>\n </mrow>\n </semantics></math> is an <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>r</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>-set contained in an edge of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ℋ</mi>\n </mrow>\n </mrow>\n </semantics></math>, then <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>S</mi>\n </mrow>\n </mrow>\n </semantics></math> is contained in at least <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math> distinct edges of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ℋ</mi>\n </mrow>\n </mrow>\n </semantics></math>. Let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ℓ</mi>\n \n <mo>≥</mo>\n \n <mn>3</mn>\n </mrow>\n </mrow>\n </semantics></math> be an integer and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ℋ</mi>\n </mrow>\n </mrow>\n </semantics></math> be a <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msubsup>\n <mi>K</mi>\n \n <mrow>\n <mi>ℓ</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mn>3</mn>\n </msubsup>\n </mrow>\n </mrow>\n </semantics></math>-saturated 3-graph on <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n </semantics></math> vertices. We prove that if either <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ℓ</mi>\n \n <mo>≥</mo>\n \n <mn>4</mn>\n </mrow>\n </mrow>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msubsup>\n <mi>δ</mi>\n \n <mn>2</mn>\n \n <mo>+</mo>\n </msubsup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>ℋ</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>></mo>\n \n <mfrac>\n <mrow>\n <mn>3</mn>\n \n <mi>ℓ</mi>\n \n <mo>−</mo>\n \n <mn>7</mn>\n </mrow>\n \n <mrow>\n <mn>3</mn>\n \n <mi>ℓ</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n </mfrac>\n \n <mi>n</mi>\n </mrow>\n </mrow>\n </semantics></math>; or <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ℓ</mi>\n \n <mo>=</mo>\n \n <mn>3</mn>\n </mrow>\n </mrow>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msubsup>\n <mi>δ</mi>\n \n <mn>2</mn>\n \n <mo>+</mo>\n </msubsup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>ℋ</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>></mo>\n \n <mn>2</mn>\n \n <mi>n</mi>\n \n <mo>∕</mo>\n \n <mn>7</mn>\n </mrow>\n </mrow>\n </semantics></math>, then <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ℋ</mi>\n </mrow>\n </mrow>\n </semantics></math> is <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ℓ</mi>\n </mrow>\n </mrow>\n </semantics></math>-partite; and the bound is best possible. This is the first stability result on minimum positive co-degree for hypergraphs.</p>\n </div>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"109 4","pages":"492-504"},"PeriodicalIF":0.9000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23241","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let be a family of -uniform hypergraphs (henceforth -graphs). An -saturated -graph is a maximal -graph not containing any member of as a subgraph. For integers , let be the collection of all -graphs with at most edges such that for some -set every pair is covered by an edge in , and let be the complete -partite -graph on vertices with no two part sizes differing by more than one. Let be the number of edges in . Our first result shows that for each every -saturated -graph on vertices with edges contains a complete -partite subgraph on vertices, which extends a stability theorem for -saturated graphs given by Popielarz, Sahasrabudhe, and Snyder. We also show that the bound is best possible. Our second result is motivated by a celebrated theorem of Andrásfai, Erdős, and Sós, which states that for every -free graph on vertices with minimum degree is -partite. We give a hypergraph version of it. The minimum positive co-degree of an -graph , denoted by , is the maximum such that if is an -set contained in an edge of , then is contained in at least distinct edges of . Let be an integer and be a -saturated 3-graph on vertices. We prove that if either and ; or and , then is -partite; and the bound is best possible. This is the first stability result on minimum positive co-degree for hypergraphs.
期刊介绍:
The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences.
A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .