Graphene Derivatives as Efficient Transducing Materials for Covalent Immobilization of Biocomponents in Electrochemical Biosensors

IF 3.5 4区 化学 Q2 ELECTROCHEMISTRY
Petr Jakubec, David Panáček, Martin-Alex Nalepa, Marianna Rossetti, Ruslan Álvarez-Diduk, Arben Merkoçi, Majlinda Vasjari, Lueda Kulla, Michal Otyepka
{"title":"Graphene Derivatives as Efficient Transducing Materials for Covalent Immobilization of Biocomponents in Electrochemical Biosensors","authors":"Petr Jakubec,&nbsp;David Panáček,&nbsp;Martin-Alex Nalepa,&nbsp;Marianna Rossetti,&nbsp;Ruslan Álvarez-Diduk,&nbsp;Arben Merkoçi,&nbsp;Majlinda Vasjari,&nbsp;Lueda Kulla,&nbsp;Michal Otyepka","doi":"10.1002/celc.202400660","DOIUrl":null,"url":null,"abstract":"<p>This review highlights the role of graphene derivatives in advancing electrochemical biosensors for applications in diagnostics, environmental monitoring, and industrial sensing. Graphene derivatives, including graphene oxide (GO), reduced GO, and wide range of graphenes prepared via fluorographene chemistry, represent a prominent class of transducing materials in electrochemical biosensor development. Their ability to support covalent immobilization of biocomponents ensures stability, specificity, and long-term performance, addressing limitations of noncovalent methods. Advances in fabrication, such as laser-assisted reduction, enable scalable and cost-effective production of conductive graphene-based electrodes. Covalent functionalization techniques, like carbodiimide coupling and click chemistry, facilitate integration with bioreceptors, leading to highly selective biosensors. Emerging approaches, including inkjet printing of graphene-based inks onto eco-friendly substrates, promise sustainable and portable diagnostic devices. These advances support biosensors aligned with modern and sustainable technologies. Future efforts must focus on scalable production, improved multiplexing, and environmental sustainability to fully harness the potential of graphene derivatives in electrochemical biosensors.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"12 12","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400660","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemElectroChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/celc.202400660","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

This review highlights the role of graphene derivatives in advancing electrochemical biosensors for applications in diagnostics, environmental monitoring, and industrial sensing. Graphene derivatives, including graphene oxide (GO), reduced GO, and wide range of graphenes prepared via fluorographene chemistry, represent a prominent class of transducing materials in electrochemical biosensor development. Their ability to support covalent immobilization of biocomponents ensures stability, specificity, and long-term performance, addressing limitations of noncovalent methods. Advances in fabrication, such as laser-assisted reduction, enable scalable and cost-effective production of conductive graphene-based electrodes. Covalent functionalization techniques, like carbodiimide coupling and click chemistry, facilitate integration with bioreceptors, leading to highly selective biosensors. Emerging approaches, including inkjet printing of graphene-based inks onto eco-friendly substrates, promise sustainable and portable diagnostic devices. These advances support biosensors aligned with modern and sustainable technologies. Future efforts must focus on scalable production, improved multiplexing, and environmental sustainability to fully harness the potential of graphene derivatives in electrochemical biosensors.

Abstract Image

石墨烯衍生物作为电化学生物传感器中生物组分共价固定的高效转导材料
这篇综述强调了石墨烯衍生物在推进电化学生物传感器在诊断、环境监测和工业传感中的应用方面的作用。石墨烯衍生物,包括氧化石墨烯(GO),还原石墨烯,以及通过氟石墨烯化学制备的各种石墨烯,代表了电化学生物传感器发展中的一类突出的转导材料。它们支持生物组分共价固定的能力确保了稳定性、特异性和长期性能,解决了非共价方法的局限性。制造技术的进步,如激光辅助还原,使导电石墨烯基电极的可扩展和经济高效的生产成为可能。共价功能化技术,如碳二亚胺偶联和点击化学,促进与生物受体的整合,导致高选择性的生物传感器。新兴的方法,包括石墨烯基油墨在环保基材上的喷墨打印,承诺可持续和便携式诊断设备。这些进步支持与现代和可持续技术相一致的生物传感器。未来的努力必须集中在可扩展生产、改进多路复用和环境可持续性上,以充分利用石墨烯衍生物在电化学生物传感器中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemElectroChem
ChemElectroChem ELECTROCHEMISTRY-
CiteScore
7.90
自引率
2.50%
发文量
515
审稿时长
1.2 months
期刊介绍: ChemElectroChem is aimed to become a top-ranking electrochemistry journal for primary research papers and critical secondary information from authors across the world. The journal covers the entire scope of pure and applied electrochemistry, the latter encompassing (among others) energy applications, electrochemistry at interfaces (including surfaces), photoelectrochemistry and bioelectrochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信