Geometric Optimization of Multitube Heat Exchangers for Enhanced Thermal Performance in PCM-based Energy Storage Systems

IF 2.6 Q2 THERMODYNAMICS
Heat Transfer Pub Date : 2025-04-30 DOI:10.1002/htj.23368
Hussein A. Abdullhussein, Munther Abdullah Mussa
{"title":"Geometric Optimization of Multitube Heat Exchangers for Enhanced Thermal Performance in PCM-based Energy Storage Systems","authors":"Hussein A. Abdullhussein,&nbsp;Munther Abdullah Mussa","doi":"10.1002/htj.23368","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This study investigates the thermal performance enhancement of phase change material (PCM)-based thermal energy storage systems via the geometric optimization of multitube heat exchangers. A numerical analysis performed using ANSYS Fluent evaluates configurations with 1, 2, 3, and 4 inner copper tubes while keeping the PCM mass and the heat-transfer fluid flow rate constant. Our results demonstrate that increasing the number of tubes significantly improves the charging efficiency of the PCM. In particular, the four-tube design achieves complete melting in 105 min, a 77% reduction compared with the single-tube benchmark (448 min). This improvement is attributed to an expanded heat-transfer surface area (an increase from 0.0703 to 0.1408 m²) and enhanced natural convection due to distributed heat sources and higher aspect ratios (28.57–57.14). The multitube configuration outperforms other augmentation strategies, such as nanoparticle additives and finned systems, by maintaining structural simplicity without adding material complexity. Notably, the design utilizes cost-effective Iraqi paraffin, underscoring its potential for localized applications. Although our simulations assume laminar flow and adiabatic boundaries, our findings highlight the viability of geometric optimization to overcome the intrinsic low thermal conductivity of PCMs. This study fills a critical research gap by quantifying the influence of tube multiplicity on PCM dynamics, offering a scalable solution for renewable energy storage. Future studies should validate these numerical results experimentally and investigate the effects of turbulent flow and economic feasibility.</p>\n </div>","PeriodicalId":44939,"journal":{"name":"Heat Transfer","volume":"54 5","pages":"3494-3506"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/htj.23368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the thermal performance enhancement of phase change material (PCM)-based thermal energy storage systems via the geometric optimization of multitube heat exchangers. A numerical analysis performed using ANSYS Fluent evaluates configurations with 1, 2, 3, and 4 inner copper tubes while keeping the PCM mass and the heat-transfer fluid flow rate constant. Our results demonstrate that increasing the number of tubes significantly improves the charging efficiency of the PCM. In particular, the four-tube design achieves complete melting in 105 min, a 77% reduction compared with the single-tube benchmark (448 min). This improvement is attributed to an expanded heat-transfer surface area (an increase from 0.0703 to 0.1408 m²) and enhanced natural convection due to distributed heat sources and higher aspect ratios (28.57–57.14). The multitube configuration outperforms other augmentation strategies, such as nanoparticle additives and finned systems, by maintaining structural simplicity without adding material complexity. Notably, the design utilizes cost-effective Iraqi paraffin, underscoring its potential for localized applications. Although our simulations assume laminar flow and adiabatic boundaries, our findings highlight the viability of geometric optimization to overcome the intrinsic low thermal conductivity of PCMs. This study fills a critical research gap by quantifying the influence of tube multiplicity on PCM dynamics, offering a scalable solution for renewable energy storage. Future studies should validate these numerical results experimentally and investigate the effects of turbulent flow and economic feasibility.

基于pcm储能系统的多管换热器几何优化研究
本研究通过多管换热器的几何优化研究相变材料(PCM)储能系统的热性能增强。利用ANSYS Fluent进行了数值分析,在保持PCM质量和传热流体流速恒定的情况下,评估了1、2、3和4个内铜管的配置。结果表明,增加管数可以显著提高PCM的充电效率。特别是,四管设计在105分钟内实现了完全熔化,与单管基准(448分钟)相比减少了77%。这一改进归因于传热表面积的扩大(从0.0703 m²增加到0.1408 m²)和由于分布式热源和更高的长径比(28.57-57.14)而增强的自然对流。通过保持结构的简单性而不增加材料的复杂性,多管结构优于其他增强策略,如纳米颗粒添加剂和鳍状系统。值得注意的是,该设计采用了具有成本效益的伊拉克石蜡,强调了其本地化应用的潜力。虽然我们的模拟假设层流和绝热边界,但我们的发现强调了几何优化的可行性,以克服PCMs固有的低导热系数。本研究通过量化管数对PCM动力学的影响,填补了一个关键的研究空白,为可再生能源存储提供了一个可扩展的解决方案。未来的研究应在实验上验证这些数值结果,并研究湍流的影响和经济可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Heat Transfer
Heat Transfer THERMODYNAMICS-
CiteScore
6.30
自引率
19.40%
发文量
342
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信