Constructions of Optimal Sparse r -Disjunct Matrices via Packings

IF 0.5 4区 数学 Q3 MATHEMATICS
Liying Yu, Xin Wang, Lijun Ji
{"title":"Constructions of Optimal Sparse \n \n \n \n r\n \n \n -Disjunct Matrices via Packings","authors":"Liying Yu,&nbsp;Xin Wang,&nbsp;Lijun Ji","doi":"10.1002/jcd.21986","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Group testing has been widely used in various aspects, and the <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n </mrow>\n </mrow>\n </semantics></math>-disjunct matrix plays a crucial role in group testing. The original purpose of the group testing is to identify a set of at most <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n </mrow>\n </mrow>\n </semantics></math> positive items from a batch of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>M</mi>\n </mrow>\n </mrow>\n </semantics></math> total items using as fewer tests as possible. In many practical applications, each test can include only a limited number of items and each item can participate in a limited number of tests. In this paper, we use the tools from combinatorial design theory to construct optimal 2-disjunct matrices with <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n </semantics></math> rows and limited row weight <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>3</mn>\n \n <mo>&lt;</mo>\n \n <mi>ρ</mi>\n \n <mo>≤</mo>\n \n <mrow>\n <mo>⌊</mo>\n \n <mfrac>\n <mrow>\n <mi>n</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mn>2</mn>\n </mfrac>\n \n <mo>⌋</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> and optimal 3-disjunct matrices with <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n </semantics></math> rows and limited row weight <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>4</mn>\n \n <mo>&lt;</mo>\n \n <mi>ρ</mi>\n \n <mo>≤</mo>\n \n <mrow>\n <mo>⌊</mo>\n \n <mfrac>\n <mrow>\n <mi>n</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mn>3</mn>\n </mfrac>\n \n <mo>⌋</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>, respectively. Also we use the known graph-matching theorem to give an asymptotically optimal upper bound on the <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n </mrow>\n </mrow>\n </semantics></math>-disjunct matrices with limited column weight <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n \n <mo>≤</mo>\n \n <mi>w</mi>\n \n <mo>≤</mo>\n \n <mn>2</mn>\n \n <mi>r</mi>\n </mrow>\n </mrow>\n </semantics></math>.</p>\n </div>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"33 8","pages":"287-299"},"PeriodicalIF":0.5000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Designs","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21986","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Group testing has been widely used in various aspects, and the r -disjunct matrix plays a crucial role in group testing. The original purpose of the group testing is to identify a set of at most r positive items from a batch of M total items using as fewer tests as possible. In many practical applications, each test can include only a limited number of items and each item can participate in a limited number of tests. In this paper, we use the tools from combinatorial design theory to construct optimal 2-disjunct matrices with n rows and limited row weight 3 < ρ n 1 2 and optimal 3-disjunct matrices with n rows and limited row weight 4 < ρ n 1 3 , respectively. Also we use the known graph-matching theorem to give an asymptotically optimal upper bound on the r -disjunct matrices with limited column weight r + 1 w 2 r .

通过填充构造最优稀疏r -不相交矩阵
群检验在各个方面都有广泛的应用,而r -分离矩阵在群检验中起着至关重要的作用。组测试的最初目的是使用尽可能少的测试,从一批总共M个项目中识别最多r个阳性项目。在许多实际应用中,每个测试只能包含有限数量的项目,每个项目只能参与有限数量的测试。本文利用组合设计理论的工具,构造了具有n行、有限行权3 <的最优二断矩阵;ρ≤⌊n−1 2⌋最优的n行、限定行权4 <的三分析矩阵;ρ≤⌊n−1 3⌋,分别。利用已知的图匹配定理,给出了列权值为r + 1≤的r -不相交矩阵的渐近最优上界W≤2r。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
14.30%
发文量
55
审稿时长
>12 weeks
期刊介绍: The Journal of Combinatorial Designs is an international journal devoted to the timely publication of the most influential papers in the area of combinatorial design theory. All topics in design theory, and in which design theory has important applications, are covered, including: block designs, t-designs, pairwise balanced designs and group divisible designs Latin squares, quasigroups, and related algebras computational methods in design theory construction methods applications in computer science, experimental design theory, and coding theory graph decompositions, factorizations, and design-theoretic techniques in graph theory and extremal combinatorics finite geometry and its relation with design theory. algebraic aspects of design theory. Researchers and scientists can depend on the Journal of Combinatorial Designs for the most recent developments in this rapidly growing field, and to provide a forum for both theoretical research and applications. All papers appearing in the Journal of Combinatorial Designs are carefully peer refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信