Numerical Analysis of Radiative Magnetoviscoelastic Micropolar Flow External to a Sphere With a Convective Boundary Surface Condition

IF 2.6 Q2 THERMODYNAMICS
Heat Transfer Pub Date : 2025-04-11 DOI:10.1002/htj.23344
S. Abdul Gaffar, O. Anwar Bég, P. Ramesh Reddy, Asra Anjum, Tasveera A. Bég, S. Kuharat
{"title":"Numerical Analysis of Radiative Magnetoviscoelastic Micropolar Flow External to a Sphere With a Convective Boundary Surface Condition","authors":"S. Abdul Gaffar,&nbsp;O. Anwar Bég,&nbsp;P. Ramesh Reddy,&nbsp;Asra Anjum,&nbsp;Tasveera A. Bég,&nbsp;S. Kuharat","doi":"10.1002/htj.23344","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Increasing attention is being paid to the study of the heat transfer properties of non-Newtonian fluids as a result of their growing use in many industrial and manufacturing processes. Micropolar fluids have garnered a lot of interest for potential industrial uses because of their distinctive microstructures. Both viscoelastic and microstructural characteristics of the non-Newtonian fluid make it mimic several polymers. Motivated by magnetic polymer coating dynamics operations, in this article, thermoconvective nonlinear, steady-state boundary layer flow of an incompressible third-grade viscoelastic micropolar fluid from an isothermal sphere with magnetic field and thermal radiation is investigated theoretically and numerically. The micropolar model incorporates microelement gyratory (rotating) motions and accurately simulates complex polymeric suspensions. An accurate implicit finite-difference Keller-Box method of second order is used to solve numerically the modified nondimensional conservation equations under physically suitable boundary conditions. Verification of the code is conducted using previous special cases of the model from the literature. The impacts of several nondimensional parameters, that is, third-grade viscoelastic parameter (<i>ϕ</i>), third-grade material fluid parameters (<i>ε</i><sub>1</sub>, <i>ε</i><sub>2</sub>), Biot number (<i>γ</i>), thermal radiation parameter (<i>R</i>), Prandtl number (<i>Pr</i>), magnetic parameter (<i>M</i>), micropolar material parameter (<i>V</i>), Eringen vortex viscosity parameter (<i>K</i>), and dimensionless tangential coordinate (<i>ξ</i>) on linear (translational) velocity, angular velocity, and temperature distributions are computed and depicted graphically. Additionally, the impacts of selected parameters on skin friction, wall couple stress (wall angular velocity gradient), and Nusselt number (wall heat transfer rate) are also examined. As the third-grade parameter (<i>ϕ</i>) increases, velocity accelerates farther away from the sphere surface while decelerating close to it. The oscillatory response of microrotation (angular) velocity indicates a reverse spin of the microelements. Increasing the Eringen micropolar coupling parameter <i>K</i> (i.e., the ratio of Newtonian dynamic viscosity to Eringen vortex viscosity) causes the flow to accelerate farther away from the wall while decreasing velocity closer to it. Skin friction and wall couple stress are both increased, while the local Nusselt number is depleted with higher values of the Eringen micropolar coupling parameter. With an elevation in thermal Biot number (<span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>γ</mi>\n </mrow>\n </mrow>\n </semantics></math>), there is a marked increase in Nusselt number and skin friction, whereas the wall couple stress (sphere surface microrotation gradient) is depleted. There is a significant depletion in heat transfer rate (Nusselt number) with increasing first viscoelastic material parameter (<i>ε</i><sub>1</sub>), whereas skin friction and wall couple stress exhibit a considerable elevation. With increasing second viscoelastic material fluid parameter (<i>ε</i><sub>2</sub>), skin friction and heat transfer rate (Nusselt number) are both increased, whereas wall couple stress is reduced. With an elevation in the magnetic interaction parameter, <i>M</i>, linear velocity is significantly damped, whereas angular velocity is enhanced (further from the sphere surface) and temperature is also elevated substantially, as is thermal boundary layer thickness in the magnetic polymer. The current simulations are relevant to the high-temperature coating processing of electromagnetic polymers on curved bodies.</p>\n </div>","PeriodicalId":44939,"journal":{"name":"Heat Transfer","volume":"54 5","pages":"3112-3133"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/htj.23344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Increasing attention is being paid to the study of the heat transfer properties of non-Newtonian fluids as a result of their growing use in many industrial and manufacturing processes. Micropolar fluids have garnered a lot of interest for potential industrial uses because of their distinctive microstructures. Both viscoelastic and microstructural characteristics of the non-Newtonian fluid make it mimic several polymers. Motivated by magnetic polymer coating dynamics operations, in this article, thermoconvective nonlinear, steady-state boundary layer flow of an incompressible third-grade viscoelastic micropolar fluid from an isothermal sphere with magnetic field and thermal radiation is investigated theoretically and numerically. The micropolar model incorporates microelement gyratory (rotating) motions and accurately simulates complex polymeric suspensions. An accurate implicit finite-difference Keller-Box method of second order is used to solve numerically the modified nondimensional conservation equations under physically suitable boundary conditions. Verification of the code is conducted using previous special cases of the model from the literature. The impacts of several nondimensional parameters, that is, third-grade viscoelastic parameter (ϕ), third-grade material fluid parameters (ε1, ε2), Biot number (γ), thermal radiation parameter (R), Prandtl number (Pr), magnetic parameter (M), micropolar material parameter (V), Eringen vortex viscosity parameter (K), and dimensionless tangential coordinate (ξ) on linear (translational) velocity, angular velocity, and temperature distributions are computed and depicted graphically. Additionally, the impacts of selected parameters on skin friction, wall couple stress (wall angular velocity gradient), and Nusselt number (wall heat transfer rate) are also examined. As the third-grade parameter (ϕ) increases, velocity accelerates farther away from the sphere surface while decelerating close to it. The oscillatory response of microrotation (angular) velocity indicates a reverse spin of the microelements. Increasing the Eringen micropolar coupling parameter K (i.e., the ratio of Newtonian dynamic viscosity to Eringen vortex viscosity) causes the flow to accelerate farther away from the wall while decreasing velocity closer to it. Skin friction and wall couple stress are both increased, while the local Nusselt number is depleted with higher values of the Eringen micropolar coupling parameter. With an elevation in thermal Biot number ( γ ), there is a marked increase in Nusselt number and skin friction, whereas the wall couple stress (sphere surface microrotation gradient) is depleted. There is a significant depletion in heat transfer rate (Nusselt number) with increasing first viscoelastic material parameter (ε1), whereas skin friction and wall couple stress exhibit a considerable elevation. With increasing second viscoelastic material fluid parameter (ε2), skin friction and heat transfer rate (Nusselt number) are both increased, whereas wall couple stress is reduced. With an elevation in the magnetic interaction parameter, M, linear velocity is significantly damped, whereas angular velocity is enhanced (further from the sphere surface) and temperature is also elevated substantially, as is thermal boundary layer thickness in the magnetic polymer. The current simulations are relevant to the high-temperature coating processing of electromagnetic polymers on curved bodies.

具有对流边界面条件的球面外辐射磁粘弹性微极流数值分析
由于非牛顿流体在许多工业和制造过程中的应用日益广泛,对其传热特性的研究日益受到重视。由于其独特的微观结构,微极流体在潜在的工业用途上引起了人们的极大兴趣。非牛顿流体的粘弹性和微观结构特性使其能够模拟多种聚合物。在磁性聚合物包覆动力学操作的驱动下,对具有磁场和热辐射的等温球中不可压缩的三级粘弹性微极流体的热对流非线性稳态边界层流动进行了理论和数值研究。微极性模型结合了微元素的旋转运动,并精确地模拟了复杂的聚合物悬浮液。采用精确的隐式二阶有限差分Keller-Box法,在适当的物理边界条件下对修正后的无量纲守恒方程进行了数值求解。代码的验证是使用先前文献中模型的特殊情况进行的。计算了三级粘弹性参数(φ)、三级材料流体参数(ε1、ε2)、Biot数(γ)、热辐射参数(R)、普朗特数(Pr)、磁性参数(M)、微极材料参数(V)、Eringen涡旋粘度参数(K)和无量纲切向坐标(ξ)对线速度(平移)、角速度和温度分布的影响,并用图形表示。此外,还研究了所选参数对表面摩擦、壁面耦合应力(壁面角速度梯度)和努塞尔数(壁面换热率)的影响。随着第三级参数(φ)的增大,速度在远离球面的地方加速,而在靠近球面的地方减速。微旋转(角)速度的振荡响应表明了微元素的反向旋转。增大Eringen微极耦合参数K(即牛顿动力粘度与Eringen涡旋粘度之比)会使流动在远离壁面的地方加速,而在靠近壁面的地方速度降低。随着Eringen微极耦合参数的增大,表面摩擦和壁面耦合应力均增大,而局部努塞尔数减小。随着热Biot数(γ)的升高,Nusselt数和表面摩擦显著增加,而壁面耦合应力(球面微旋转梯度)减少。随着第一粘弹性材料参数(ε1)的增加,传热速率(努塞尔数)显著降低,而表面摩擦和壁面耦合应力则显著升高。随着二级粘弹性材料流体参数ε2的增大,表面摩擦和换热率(努塞尔数)均增大,壁面偶应力减小。随着磁相互作用参数M的升高,线速度显著衰减,而角速度增强(离球体表面更远),温度也大幅升高,磁性聚合物中的热边界层厚度也是如此。目前的模拟是关于电磁聚合物在弯曲体上的高温涂层加工。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Heat Transfer
Heat Transfer THERMODYNAMICS-
CiteScore
6.30
自引率
19.40%
发文量
342
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信