Daniel Okoh, Claudio Cesaroni, Babatunde Rabiu, Kazuo Shiokawa, Yuichi Otsuka, Samuel Ogunjo, Aderonke Akerele, John Bosco Habarulema, Bruno Nava, Yenca Migoya-Orué, Punyawi Jamjareegulgarn, Adeniran Seun, Ogechi Adama, George Ochieng, James Ameh, Adero Awuor, Paul Baki
{"title":"A Bootstrapping Convolutional Neural Network Technique for Optimizing Automated Detection of Equatorial Plasma Bubbles by Optical All-Sky Imagers","authors":"Daniel Okoh, Claudio Cesaroni, Babatunde Rabiu, Kazuo Shiokawa, Yuichi Otsuka, Samuel Ogunjo, Aderonke Akerele, John Bosco Habarulema, Bruno Nava, Yenca Migoya-Orué, Punyawi Jamjareegulgarn, Adeniran Seun, Ogechi Adama, George Ochieng, James Ameh, Adero Awuor, Paul Baki","doi":"10.1029/2024EA004117","DOIUrl":null,"url":null,"abstract":"<p>Equatorial plasma bubbles (EPBs) disrupt satellite-based communication and navigation systems, particularly in equatorial regions. Reliable detection and classification of EPBs from all-sky imager (ASI) images are essential for accurate space weather monitoring and forecasting. This study presents a novel bootstrapping convolutional neural network (CNN) approach to optimize automated EPB detection on ASI images for operational space weather monitoring applications, and overcoming challenges related to image variability and imbalanced data sets. Data used for CNN training were obtained from the optical mesosphere thermosphere imagers ASI installed at the Space Environment Research Laboratory, National Space Research and Development Agency, Abuja during the period from 2015 to 2020. Our method involved training three sub-models, and aggregating their predictions. The CNN trainings were conducted on three sub-datasets of 3,000 images each, categorized as “EPB,” “Noisy/Cloudy” or “No EPB.” Three corresponding sub-models were developed from the CNN trainings. The three sub-model classifications independently gave prediction accuracies of 98.67%, 98.33%, and 95.83% on a reserved test data set of 600 images. Ensemble models further improved the model prediction accuracies to 99.17% and 99.33% for methods based on the mean of sub-model probabilities and the mode of sub-model classifications respectively. Our results indicate that the bootstrapping CNN technique enhanced the EPB detection accuracy, providing a powerful tool for real-time space weather monitoring applications, and implications for improving operational reliability of satellite-based navigation and communication in the equatorial region.</p>","PeriodicalId":54286,"journal":{"name":"Earth and Space Science","volume":"12 6","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EA004117","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Space Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024EA004117","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Equatorial plasma bubbles (EPBs) disrupt satellite-based communication and navigation systems, particularly in equatorial regions. Reliable detection and classification of EPBs from all-sky imager (ASI) images are essential for accurate space weather monitoring and forecasting. This study presents a novel bootstrapping convolutional neural network (CNN) approach to optimize automated EPB detection on ASI images for operational space weather monitoring applications, and overcoming challenges related to image variability and imbalanced data sets. Data used for CNN training were obtained from the optical mesosphere thermosphere imagers ASI installed at the Space Environment Research Laboratory, National Space Research and Development Agency, Abuja during the period from 2015 to 2020. Our method involved training three sub-models, and aggregating their predictions. The CNN trainings were conducted on three sub-datasets of 3,000 images each, categorized as “EPB,” “Noisy/Cloudy” or “No EPB.” Three corresponding sub-models were developed from the CNN trainings. The three sub-model classifications independently gave prediction accuracies of 98.67%, 98.33%, and 95.83% on a reserved test data set of 600 images. Ensemble models further improved the model prediction accuracies to 99.17% and 99.33% for methods based on the mean of sub-model probabilities and the mode of sub-model classifications respectively. Our results indicate that the bootstrapping CNN technique enhanced the EPB detection accuracy, providing a powerful tool for real-time space weather monitoring applications, and implications for improving operational reliability of satellite-based navigation and communication in the equatorial region.
期刊介绍:
Marking AGU’s second new open access journal in the last 12 months, Earth and Space Science is the only journal that reflects the expansive range of science represented by AGU’s 62,000 members, including all of the Earth, planetary, and space sciences, and related fields in environmental science, geoengineering, space engineering, and biogeochemistry.