Optimal Power Split Control for State of Charge Balancing in Battery Systems With Integrated Spatial Thermal Analysis and Aging Estimation

Energy Storage Pub Date : 2025-06-11 DOI:10.1002/est2.70206
Vivek Teja Tanjavooru, Melina Graner, Prashant Pant, Thomas Hamacher, Holger Hesse
{"title":"Optimal Power Split Control for State of Charge Balancing in Battery Systems With Integrated Spatial Thermal Analysis and Aging Estimation","authors":"Vivek Teja Tanjavooru,&nbsp;Melina Graner,&nbsp;Prashant Pant,&nbsp;Thomas Hamacher,&nbsp;Holger Hesse","doi":"10.1002/est2.70206","DOIUrl":null,"url":null,"abstract":"<p>This paper proposes an optimal control strategy for SOC balancing and introduces a framework for analyzing the spatial temperature distribution in a multi-pack battery energy storage system (BESS) composed of multiple battery modules. While various control techniques exist to distribute power among parallel-connected battery systems, their influence on the spatial temperature distribution within their modules is often neglected, despite temperature being a critical factor accelerating battery health degradation. To bridge this research gap, this framework integrates a 1D thermal simulation and state-of-health (SoH) estimation with power split control strategies. To showcase the application of this framework, a comparative study of two power-sharing methods is conducted: (i) Model Predictive Control (MPC) based State of Charge (SoC) balancing, and (ii) Rule-Based Control (RBC) strategies, highlighting their impact on temperature distribution and battery aging. Results show that MPC maintains a more uniform temperature profile, limiting peak temperatures to 300 K and minimizing SoH degradation, whereas RBC results in higher peak temperatures (314 K) and accelerated aging. In summary, this framework primarily intends to: (i) Enable researchers to further develop health-aware power-sharing strategies for BESS. (ii) Equip BESS operators with detailed spatial temperature insights to optimize power management and cooling systems.</p>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"7 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/est2.70206","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/est2.70206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes an optimal control strategy for SOC balancing and introduces a framework for analyzing the spatial temperature distribution in a multi-pack battery energy storage system (BESS) composed of multiple battery modules. While various control techniques exist to distribute power among parallel-connected battery systems, their influence on the spatial temperature distribution within their modules is often neglected, despite temperature being a critical factor accelerating battery health degradation. To bridge this research gap, this framework integrates a 1D thermal simulation and state-of-health (SoH) estimation with power split control strategies. To showcase the application of this framework, a comparative study of two power-sharing methods is conducted: (i) Model Predictive Control (MPC) based State of Charge (SoC) balancing, and (ii) Rule-Based Control (RBC) strategies, highlighting their impact on temperature distribution and battery aging. Results show that MPC maintains a more uniform temperature profile, limiting peak temperatures to 300 K and minimizing SoH degradation, whereas RBC results in higher peak temperatures (314 K) and accelerated aging. In summary, this framework primarily intends to: (i) Enable researchers to further develop health-aware power-sharing strategies for BESS. (ii) Equip BESS operators with detailed spatial temperature insights to optimize power management and cooling systems.

基于空间热分析和老化估计的电池状态平衡最优功率分割控制
本文提出了一种SOC平衡的最优控制策略,并引入了一个分析由多个电池模块组成的多包电池储能系统(BESS)空间温度分布的框架。虽然存在各种控制技术来在并联电池系统之间分配功率,但它们对模块内空间温度分布的影响往往被忽视,尽管温度是加速电池健康退化的关键因素。为了弥补这一研究空白,该框架将一维热模拟和健康状态(SoH)估计与功率分割控制策略集成在一起。为了展示该框架的应用,对两种功率共享方法进行了比较研究:(i)基于模型预测控制(MPC)的荷电状态(SoC)平衡和(ii)基于规则的控制(RBC)策略,重点研究了它们对温度分布和电池老化的影响。结果表明,MPC保持了更均匀的温度分布,将峰值温度限制在300 K,最大限度地减少了SoH的降解,而RBC导致更高的峰值温度(314 K)和加速老化。总而言之,该框架的主要目的是:(i)使研究人员能够进一步制定具有健康意识的BESS权力分享战略。(ii)为BESS操作员提供详细的空间温度洞察,以优化电源管理和冷却系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信