{"title":"Estimating Air/Contaminant Transport Rate and Time From Attached Garages to Residential Living Spaces With a Single Tracer Gas Decay Test","authors":"Yigang Sun, Zachary Merrin, Paul Francisco","doi":"10.1155/ina/1957553","DOIUrl":null,"url":null,"abstract":"<p>To characterize the air and contaminant transport from an attached garage to a living space in a multizone residential building, a novel mathematical regression model is proposed in this paper to estimate the transport rate and time and interpret the measurement results from a single tracer gas decay test. Unlike conventional contaminant/tracer gas experimental methods, which only characterize air/contaminant transport by comparing the average or highest concentrations of contaminant/tracer gas measured in the release zone and the target zone, this proposed model establishes a mathematical relationship directly between the two tracer gas concentrations, with the air transport rate and time factored into the coefficients of the model equations. Thus, the air/contaminant transport rate can be explicitly and empirically estimated from the data of the tracer gas concentrations measured during a simple tracer gas decay test without extra experimental requirements. The effectiveness of the model is verified with a few application examples showing its goodness of fit to the measured data from tracer gas decay tests in several occupied residential buildings. The proposed method can be practically used to estimate the air/contaminant transport rates and overall transport time from a single source zone to each target zone in a multizone building when all the underlying interzonal airflows are relatively constant and have minimal disturbances.</p>","PeriodicalId":13529,"journal":{"name":"Indoor air","volume":"2025 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/ina/1957553","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indoor air","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/ina/1957553","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
To characterize the air and contaminant transport from an attached garage to a living space in a multizone residential building, a novel mathematical regression model is proposed in this paper to estimate the transport rate and time and interpret the measurement results from a single tracer gas decay test. Unlike conventional contaminant/tracer gas experimental methods, which only characterize air/contaminant transport by comparing the average or highest concentrations of contaminant/tracer gas measured in the release zone and the target zone, this proposed model establishes a mathematical relationship directly between the two tracer gas concentrations, with the air transport rate and time factored into the coefficients of the model equations. Thus, the air/contaminant transport rate can be explicitly and empirically estimated from the data of the tracer gas concentrations measured during a simple tracer gas decay test without extra experimental requirements. The effectiveness of the model is verified with a few application examples showing its goodness of fit to the measured data from tracer gas decay tests in several occupied residential buildings. The proposed method can be practically used to estimate the air/contaminant transport rates and overall transport time from a single source zone to each target zone in a multizone building when all the underlying interzonal airflows are relatively constant and have minimal disturbances.
期刊介绍:
The quality of the environment within buildings is a topic of major importance for public health.
Indoor Air provides a location for reporting original research results in the broad area defined by the indoor environment of non-industrial buildings. An international journal with multidisciplinary content, Indoor Air publishes papers reflecting the broad categories of interest in this field: health effects; thermal comfort; monitoring and modelling; source characterization; ventilation and other environmental control techniques.
The research results present the basic information to allow designers, building owners, and operators to provide a healthy and comfortable environment for building occupants, as well as giving medical practitioners information on how to deal with illnesses related to the indoor environment.