Electrolytes for Lithium-Ion Batteries: Chemical Changes over Time and in the Presence of Impurities

IF 3.5 4区 化学 Q2 ELECTROCHEMISTRY
Ulf Breddemann, Krum Banov, Miriam Khodeir, Petr Novák
{"title":"Electrolytes for Lithium-Ion Batteries: Chemical Changes over Time and in the Presence of Impurities","authors":"Ulf Breddemann,&nbsp;Krum Banov,&nbsp;Miriam Khodeir,&nbsp;Petr Novák","doi":"10.1002/celc.202500017","DOIUrl":null,"url":null,"abstract":"<p>In this study, the impact of typical contaminants—metal carbonates, metal sulfates, and metal acetates with M = Li, Ni, Mn, and Co—on the degradation of the commercial LP30 electrolyte is systematically investigated. Using a combination of electrochemical methods, inductively coupled plasma optical emission spectroscopy, nuclear magnetic resonance spectroscopy, and thermodynamic analyses, the solubility of these impurities, their influence on electrolyte decomposition, and their effect on NMC 811-based positive electrodes are assessed. Our results indicate that the presence of transition metal contaminants accelerates electrolyte aging, leading to the formation of decomposition products such as HF, OPF<sub>2</sub>(OH), and OPF(OCH<sub>3</sub>)<sub>2</sub>). Electrochemical impedance spectroscopy and galvanostatic cycling reveal that these impurities contribute to increased charge transfer resistance and capacity fading. Notably, nickel-based contaminants exhibit the strongest impact, likely due to their catalytic activity in side reactions. A detailed thermodynamic analysis further elucidates the reaction pathways responsible for the formation of these degradation products. This study highlights the complex interplay between electrolyte contamination, aging processes, and electrochemical performance, providing valuable insights into the stability of lithium-ion battery electrolytes and the necessity of impurity control in battery recycling and material purification.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"12 12","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202500017","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemElectroChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/celc.202500017","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, the impact of typical contaminants—metal carbonates, metal sulfates, and metal acetates with M = Li, Ni, Mn, and Co—on the degradation of the commercial LP30 electrolyte is systematically investigated. Using a combination of electrochemical methods, inductively coupled plasma optical emission spectroscopy, nuclear magnetic resonance spectroscopy, and thermodynamic analyses, the solubility of these impurities, their influence on electrolyte decomposition, and their effect on NMC 811-based positive electrodes are assessed. Our results indicate that the presence of transition metal contaminants accelerates electrolyte aging, leading to the formation of decomposition products such as HF, OPF2(OH), and OPF(OCH3)2). Electrochemical impedance spectroscopy and galvanostatic cycling reveal that these impurities contribute to increased charge transfer resistance and capacity fading. Notably, nickel-based contaminants exhibit the strongest impact, likely due to their catalytic activity in side reactions. A detailed thermodynamic analysis further elucidates the reaction pathways responsible for the formation of these degradation products. This study highlights the complex interplay between electrolyte contamination, aging processes, and electrochemical performance, providing valuable insights into the stability of lithium-ion battery electrolytes and the necessity of impurity control in battery recycling and material purification.

Abstract Image

锂离子电池电解质:随时间和杂质存在的化学变化
在本研究中,系统地研究了典型污染物——金属碳酸盐、金属硫酸盐和M = Li、Ni、Mn和co的金属醋酸盐对商用LP30电解质降解的影响。采用电化学方法、电感耦合等离子体发射光谱、核磁共振光谱和热力学分析相结合的方法,评估了这些杂质的溶解度、它们对电解质分解的影响以及它们对NMC 811基正极的影响。我们的研究结果表明,过渡金属污染物的存在加速了电解液的老化,导致HF、OPF2(OH)和OPF(OCH3)2等分解产物的形成。电化学阻抗谱和恒流循环表明,这些杂质有助于增加电荷转移电阻和容量衰减。值得注意的是,镍基污染物表现出最强的影响,可能是由于它们在副反应中的催化活性。详细的热力学分析进一步阐明了形成这些降解产物的反应途径。这项研究强调了电解质污染、老化过程和电化学性能之间复杂的相互作用,为锂离子电池电解质的稳定性以及电池回收和材料净化中杂质控制的必要性提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemElectroChem
ChemElectroChem ELECTROCHEMISTRY-
CiteScore
7.90
自引率
2.50%
发文量
515
审稿时长
1.2 months
期刊介绍: ChemElectroChem is aimed to become a top-ranking electrochemistry journal for primary research papers and critical secondary information from authors across the world. The journal covers the entire scope of pure and applied electrochemistry, the latter encompassing (among others) energy applications, electrochemistry at interfaces (including surfaces), photoelectrochemistry and bioelectrochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信