Magma-Assisted Flexure of Hawaiian Lithosphere Inferred From Three-Dimensional Models of Lithospheric Flexure Constrained by Active Source Seismic Data
D. Douglas, G. Ito, B. Boston, R. Dunn, J. Naliboff, P. Wessel, A. B. Watts, D. Shillington, P. Cilli
{"title":"Magma-Assisted Flexure of Hawaiian Lithosphere Inferred From Three-Dimensional Models of Lithospheric Flexure Constrained by Active Source Seismic Data","authors":"D. Douglas, G. Ito, B. Boston, R. Dunn, J. Naliboff, P. Wessel, A. B. Watts, D. Shillington, P. Cilli","doi":"10.1029/2024JB030376","DOIUrl":null,"url":null,"abstract":"<p>Reprocessed and newly acquired seismic data provide new constraints on lithospheric flexure profiles beneath the Hawaiian Islands. We use these new observations and three-dimensional numerical models of lithospheric deformation combining elasticity, brittle failure, low-temperature plasticity (LTP) and high-temperature creep deformation mechanisms to constrain the thermal structure and rheology of the oceanic lithosphere. When simulating normal oceanic lithospheric conditions with experimentally-derived LTP flow laws, the lithosphere flexes with too little amplitude and over too large a wavelength compared to observations. This result supports prior studies which call on the need to (a) adjust the LTP flow laws or, alternatively, to (b) account for magma-assisted flexural weakening of the lithosphere. Here, models that explore reductions in the activation energy of LTP are able to explain the observations of flexure with a smaller reduction than previously suggested. Models that explore elevated temperatures attributed to hotspot magmatism localized beneath the island edifices also produce close fits to the observed flexural profiles. Although the two factors cannot be distinguished based on fits to the flexure profiles, localized magma-assisted flexural weakening is supported by recent studies of geothermobarometry of pyroxenite xenoliths from O'ahu, seismic structure and patterns of seismicity beneath the Hawaiian chain. If magma-assisted flexure is a common phenomenon at other ocean islands and seamounts, it could explain similarities in elastic plate thickness with subduction zones as well as differences with fracture zones globally.</p>","PeriodicalId":15864,"journal":{"name":"Journal of Geophysical Research: Solid Earth","volume":"130 6","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JB030376","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Solid Earth","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JB030376","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Reprocessed and newly acquired seismic data provide new constraints on lithospheric flexure profiles beneath the Hawaiian Islands. We use these new observations and three-dimensional numerical models of lithospheric deformation combining elasticity, brittle failure, low-temperature plasticity (LTP) and high-temperature creep deformation mechanisms to constrain the thermal structure and rheology of the oceanic lithosphere. When simulating normal oceanic lithospheric conditions with experimentally-derived LTP flow laws, the lithosphere flexes with too little amplitude and over too large a wavelength compared to observations. This result supports prior studies which call on the need to (a) adjust the LTP flow laws or, alternatively, to (b) account for magma-assisted flexural weakening of the lithosphere. Here, models that explore reductions in the activation energy of LTP are able to explain the observations of flexure with a smaller reduction than previously suggested. Models that explore elevated temperatures attributed to hotspot magmatism localized beneath the island edifices also produce close fits to the observed flexural profiles. Although the two factors cannot be distinguished based on fits to the flexure profiles, localized magma-assisted flexural weakening is supported by recent studies of geothermobarometry of pyroxenite xenoliths from O'ahu, seismic structure and patterns of seismicity beneath the Hawaiian chain. If magma-assisted flexure is a common phenomenon at other ocean islands and seamounts, it could explain similarities in elastic plate thickness with subduction zones as well as differences with fracture zones globally.
期刊介绍:
The Journal of Geophysical Research: Solid Earth serves as the premier publication for the breadth of solid Earth geophysics including (in alphabetical order): electromagnetic methods; exploration geophysics; geodesy and gravity; geodynamics, rheology, and plate kinematics; geomagnetism and paleomagnetism; hydrogeophysics; Instruments, techniques, and models; solid Earth interactions with the cryosphere, atmosphere, oceans, and climate; marine geology and geophysics; natural and anthropogenic hazards; near surface geophysics; petrology, geochemistry, and mineralogy; planet Earth physics and chemistry; rock mechanics and deformation; seismology; tectonophysics; and volcanology.
JGR: Solid Earth has long distinguished itself as the venue for publication of Research Articles backed solidly by data and as well as presenting theoretical and numerical developments with broad applications. Research Articles published in JGR: Solid Earth have had long-term impacts in their fields.
JGR: Solid Earth provides a venue for special issues and special themes based on conferences, workshops, and community initiatives. JGR: Solid Earth also publishes Commentaries on research and emerging trends in the field; these are commissioned by the editors, and suggestion are welcome.