Bollobás-Erdős-Tuza Conjecture for Graphs With No Induced K s , t

IF 0.9 3区 数学 Q2 MATHEMATICS
Xinbu Cheng, Zixiang Xu
{"title":"Bollobás-Erdős-Tuza Conjecture for Graphs With No Induced \n \n \n \n \n K\n \n s\n ,\n t","authors":"Xinbu Cheng,&nbsp;Zixiang Xu","doi":"10.1002/jgt.23246","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>A widely open conjecture proposed by Bollobás, Erdős, and Tuza in the early 1990s states that for any <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n </semantics></math>-vertex graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math>, if the independence number <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>α</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mi>Ω</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>n</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>, then there is a subset <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>T</mi>\n \n <mo>⊆</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mo>∣</mo>\n \n <mi>T</mi>\n \n <mo>∣</mo>\n \n <mo>=</mo>\n \n <mi>o</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>n</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>T</mi>\n </mrow>\n </mrow>\n </semantics></math> intersects all maximum independent sets of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math>. In this study, we prove that this conjecture holds for graphs that do not contain an induced <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mrow>\n <mi>s</mi>\n \n <mo>,</mo>\n \n <mi>t</mi>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> for fixed <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>t</mi>\n \n <mo>≥</mo>\n \n <mi>s</mi>\n </mrow>\n </mrow>\n </semantics></math>. Our proof leverages the probabilistic method at an appropriate juncture.</p>\n </div>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"109 4","pages":"514-517"},"PeriodicalIF":0.9000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23246","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A widely open conjecture proposed by Bollobás, Erdős, and Tuza in the early 1990s states that for any n -vertex graph G , if the independence number α ( G ) = Ω ( n ) , then there is a subset T V ( G ) with T = o ( n ) such that T intersects all maximum independent sets of G . In this study, we prove that this conjecture holds for graphs that do not contain an induced K s , t for fixed t s . Our proof leverages the probabilistic method at an appropriate juncture.

Bollobás-Erdős-Tuza无诱导K s, t图的猜想
一个由Bollobás, Erdős和Tuza在20世纪90年代初提出的广泛开放的猜想表明,对于任何n顶点图G,如果独立数α (G) = Ω (n) ,则存在一个子集T≤V (G),有∣T∣= o (n)满足T与G的所有最大独立集相交。在这项研究中,我们证明了这个猜想对不包含诱导K s的图成立,T表示固定T≥s。我们的证明在适当的时刻利用了概率方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信