Local Recognition of the Point Graphs of Some Lie Incidence Geometries

IF 0.9 3区 数学 Q2 MATHEMATICS
Ferdinand Ihringer, Paulien Jansen, Linde Lambrecht, Yannick Neyt, Daan Rijpert, Hendrik Van Maldeghem, Magali Victoor
{"title":"Local Recognition of the Point Graphs of Some Lie Incidence Geometries","authors":"Ferdinand Ihringer,&nbsp;Paulien Jansen,&nbsp;Linde Lambrecht,&nbsp;Yannick Neyt,&nbsp;Daan Rijpert,&nbsp;Hendrik Van Maldeghem,&nbsp;Magali Victoor","doi":"10.1002/jgt.23243","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Given a finite Lie incidence geometry, which is either a polar space of rank at least 3 or a strong parapolar space of symplectic rank at least 4 and diameter at most 4, or the parapolar space arising from the line Grassmannian of a projective space of dimension at least 4, we show that its point graph is determined by its local structure. This follows from a more general result, which classifies graphs whose local structure can vary over all local structures of the point graphs of the aforementioned geometries. In particular, this characterises the strongly regular graphs arising from the line Grassmannian of a finite projective space, from the half spin geometry related to the quadric <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>Q</mi>\n \n <mo>+</mo>\n </msup>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>10</mn>\n \n <mo>,</mo>\n \n <mi>q</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> and from the exceptional group of type <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>E</mi>\n \n <mn>6</mn>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>q</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> by their local structure.</p>\n </div>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"109 4","pages":"518-524"},"PeriodicalIF":0.9000,"publicationDate":"2025-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23243","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Given a finite Lie incidence geometry, which is either a polar space of rank at least 3 or a strong parapolar space of symplectic rank at least 4 and diameter at most 4, or the parapolar space arising from the line Grassmannian of a projective space of dimension at least 4, we show that its point graph is determined by its local structure. This follows from a more general result, which classifies graphs whose local structure can vary over all local structures of the point graphs of the aforementioned geometries. In particular, this characterises the strongly regular graphs arising from the line Grassmannian of a finite projective space, from the half spin geometry related to the quadric Q + ( 10 , q ) and from the exceptional group of type E 6 ( q ) by their local structure.

若干Lie关联几何点图的局部识别
给定一个有限李关联几何,即秩至少为3的极空间或辛秩至少为4且直径最大为4的强抛物线空间,或由至少为4维的射影空间的线Grassmannian产生的抛物线空间,证明了其点图是由其局部结构决定的。这源于一个更一般的结果,即对局部结构可以在上述几何的点图的所有局部结构上变化的图进行分类。特别地,这描述了由有限射影空间的格拉斯曼线产生的强正则图,从二次Q +(10)的半自旋几何中,q)及例外类别E 6 (Q)通过它们的局部结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信