Davide Molino, Federico Raffone, Pietro Zaccagnini, Alessandro Pedico, Simone Martellone, Giuseppe Ferraro, Sergio Bocchini, Giancarlo Cicero, Andrea Lamberti
{"title":"Energy Harvesting from CO2 Emission Exploiting Ionic Liquid-Based Electrochemical Capacitor","authors":"Davide Molino, Federico Raffone, Pietro Zaccagnini, Alessandro Pedico, Simone Martellone, Giuseppe Ferraro, Sergio Bocchini, Giancarlo Cicero, Andrea Lamberti","doi":"10.1002/aesr.202500019","DOIUrl":null,"url":null,"abstract":"<p>When two solutions with different compositions are mixed, the free mixing energy is released. This principle is exploited in salinity gradient power technologies like capacitive mixing (CapMix), where mixing occurs in a supercapacitor. Since this energy release holds true also for gases, research moves in the direction of harvesting energy from anthropic CO<sub>2</sub>. To do so, it is proposed for the first time to exploit an ionic liquid (IL), both as an electrolyte and CO<sub>2</sub> absorbing medium in a CapMix cell. The mechanism consists in flowing a CO<sub>2</sub>-rich gas stream, alternated to a N<sub>2</sub> stream, during the charging/discharging of two electrodes. The CO<sub>2</sub> strongly affects the electrode/IL interface and the IL physicochemical properties thereby converting the released mixing energy into electrical energy. Unlike water-based systems, where energy harvesting relies on electric double-layer expansion, we propose a new mechanism based on electrochemical potential variations during CO<sub>2</sub> capture/release, supported by molecular dynamics modeling. Key results include maximum voltage rise of 40 mV and energy and power densities of 40 μWh m<sup>−2</sup> and 0.8 mW m<sup>−2</sup>. These findings clarify the mechanism behind the electrochemical phenomena occurring when CO<sub>2</sub> interacts with IL and open the way to a new generation of electrochemical systems to harvest energy from CO<sub>2</sub> emission.</p>","PeriodicalId":29794,"journal":{"name":"Advanced Energy and Sustainability Research","volume":"6 6","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aesr.202500019","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy and Sustainability Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aesr.202500019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
When two solutions with different compositions are mixed, the free mixing energy is released. This principle is exploited in salinity gradient power technologies like capacitive mixing (CapMix), where mixing occurs in a supercapacitor. Since this energy release holds true also for gases, research moves in the direction of harvesting energy from anthropic CO2. To do so, it is proposed for the first time to exploit an ionic liquid (IL), both as an electrolyte and CO2 absorbing medium in a CapMix cell. The mechanism consists in flowing a CO2-rich gas stream, alternated to a N2 stream, during the charging/discharging of two electrodes. The CO2 strongly affects the electrode/IL interface and the IL physicochemical properties thereby converting the released mixing energy into electrical energy. Unlike water-based systems, where energy harvesting relies on electric double-layer expansion, we propose a new mechanism based on electrochemical potential variations during CO2 capture/release, supported by molecular dynamics modeling. Key results include maximum voltage rise of 40 mV and energy and power densities of 40 μWh m−2 and 0.8 mW m−2. These findings clarify the mechanism behind the electrochemical phenomena occurring when CO2 interacts with IL and open the way to a new generation of electrochemical systems to harvest energy from CO2 emission.
期刊介绍:
Advanced Energy and Sustainability Research is an open access academic journal that focuses on publishing high-quality peer-reviewed research articles in the areas of energy harvesting, conversion, storage, distribution, applications, ecology, climate change, water and environmental sciences, and related societal impacts. The journal provides readers with free access to influential scientific research that has undergone rigorous peer review, a common feature of all journals in the Advanced series. In addition to original research articles, the journal publishes opinion, editorial and review articles designed to meet the needs of a broad readership interested in energy and sustainability science and related fields.
In addition, Advanced Energy and Sustainability Research is indexed in several abstracting and indexing services, including:
CAS: Chemical Abstracts Service (ACS)
Directory of Open Access Journals (DOAJ)
Emerging Sources Citation Index (Clarivate Analytics)
INSPEC (IET)
Web of Science (Clarivate Analytics).