On the stability threshold of Couette flow for 2D Boussinesq equations

IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED
Xiaoxia Ren , Dongyi Wei
{"title":"On the stability threshold of Couette flow for 2D Boussinesq equations","authors":"Xiaoxia Ren ,&nbsp;Dongyi Wei","doi":"10.1016/j.nonrwa.2025.104421","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we prove the stability threshold <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> for 2D Boussinesq equations around the Couette flow in <span><math><mrow><mi>T</mi><mo>×</mo><mi>R</mi></mrow></math></span> with Richardson number <span><math><mrow><msup><mrow><mi>γ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>&gt;</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac></mrow></math></span>. Here the viscosity <span><math><mi>ν</mi></math></span> and thermal diffusivity <span><math><mi>μ</mi></math></span> can be different. More precisely, if <span><math><mrow><msub><mrow><mo>‖</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi><mi>n</mi></mrow></msub><mo>−</mo><mrow><mo>(</mo><mi>y</mi><mo>,</mo><mn>0</mn><mo>)</mo></mrow><mo>‖</mo></mrow><mrow><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi><mo>+</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></mrow></msub><mo>+</mo><msub><mrow><mo>‖</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi>i</mi><mi>n</mi></mrow></msub><mo>+</mo><msup><mrow><mi>γ</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>y</mi><mo>−</mo><mn>1</mn><mo>‖</mo></mrow><mrow><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi><mo>+</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></mrow></msub><mo>≤</mo><mi>c</mi><msup><mrow><mrow><mo>(</mo><mo>min</mo><mrow><mo>{</mo><mi>ν</mi><mo>,</mo><mi>μ</mi><mo>}</mo></mrow><mo>)</mo></mrow></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></mrow></math></span>, <span><math><mrow><mfrac><mrow><mi>ν</mi><mo>+</mo><mi>μ</mi></mrow><mrow><mn>2</mn><mi>γ</mi><msqrt><mrow><mi>ν</mi><mi>μ</mi></mrow></msqrt></mrow></mfrac><mo>&lt;</mo><mn>2</mn><mo>−</mo><mi>ɛ</mi></mrow></math></span>, <span><math><mrow><mi>s</mi><mo>&gt;</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></math></span>, then the asymptotic stability holds. Compared with Zhai and Zhao (2023), the regularity assumption is weaker, and the proof is much simpler.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"87 ","pages":"Article 104421"},"PeriodicalIF":1.8000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121825001075","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we prove the stability threshold 12 for 2D Boussinesq equations around the Couette flow in T×R with Richardson number γ2>14. Here the viscosity ν and thermal diffusivity μ can be different. More precisely, if vin(y,0)Hs+1/2+ρin+γ2y1Hs+1/2c(min{ν,μ})1/2, ν+μ2γνμ<2ɛ, s>1/2, then the asymptotic stability holds. Compared with Zhai and Zhao (2023), the regularity assumption is weaker, and the proof is much simpler.
二维Boussinesq方程的Couette流的稳定阈值
本文以Richardson数γ2>;14为例,证明了T×R中Couette流周围二维Boussinesq方程的稳定性阈值12。这里粘度ν和热扩散系数μ可以不同。更准确地说,如果为vin−(y, 0)为h + 1/2 +为ρy +γ2−1为h + 1/2≤c(最低{ν,μ})1/2,ν+μ2γνμ& lt; 2−ɛ,s> 1/2,然后渐近稳定。与Zhai和Zhao(2023)相比,正则性假设更弱,证明也更简单。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
5.00%
发文量
176
审稿时长
59 days
期刊介绍: Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems. The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信