{"title":"On the stability threshold of Couette flow for 2D Boussinesq equations","authors":"Xiaoxia Ren , Dongyi Wei","doi":"10.1016/j.nonrwa.2025.104421","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we prove the stability threshold <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> for 2D Boussinesq equations around the Couette flow in <span><math><mrow><mi>T</mi><mo>×</mo><mi>R</mi></mrow></math></span> with Richardson number <span><math><mrow><msup><mrow><mi>γ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>></mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac></mrow></math></span>. Here the viscosity <span><math><mi>ν</mi></math></span> and thermal diffusivity <span><math><mi>μ</mi></math></span> can be different. More precisely, if <span><math><mrow><msub><mrow><mo>‖</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi><mi>n</mi></mrow></msub><mo>−</mo><mrow><mo>(</mo><mi>y</mi><mo>,</mo><mn>0</mn><mo>)</mo></mrow><mo>‖</mo></mrow><mrow><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi><mo>+</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></mrow></msub><mo>+</mo><msub><mrow><mo>‖</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi>i</mi><mi>n</mi></mrow></msub><mo>+</mo><msup><mrow><mi>γ</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>y</mi><mo>−</mo><mn>1</mn><mo>‖</mo></mrow><mrow><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi><mo>+</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></mrow></msub><mo>≤</mo><mi>c</mi><msup><mrow><mrow><mo>(</mo><mo>min</mo><mrow><mo>{</mo><mi>ν</mi><mo>,</mo><mi>μ</mi><mo>}</mo></mrow><mo>)</mo></mrow></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></mrow></math></span>, <span><math><mrow><mfrac><mrow><mi>ν</mi><mo>+</mo><mi>μ</mi></mrow><mrow><mn>2</mn><mi>γ</mi><msqrt><mrow><mi>ν</mi><mi>μ</mi></mrow></msqrt></mrow></mfrac><mo><</mo><mn>2</mn><mo>−</mo><mi>ɛ</mi></mrow></math></span>, <span><math><mrow><mi>s</mi><mo>></mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></math></span>, then the asymptotic stability holds. Compared with Zhai and Zhao (2023), the regularity assumption is weaker, and the proof is much simpler.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"87 ","pages":"Article 104421"},"PeriodicalIF":1.8000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121825001075","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we prove the stability threshold for 2D Boussinesq equations around the Couette flow in with Richardson number . Here the viscosity and thermal diffusivity can be different. More precisely, if , , , then the asymptotic stability holds. Compared with Zhai and Zhao (2023), the regularity assumption is weaker, and the proof is much simpler.
期刊介绍:
Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems.
The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.