W. Chris Oosthuizen , Stefan Schoombie , Marianna Chimienti , Pierre A. Pistorius , Andrew D. Lowther
{"title":"Dive wiggles as a proxy of prey consumption in krill-feeding penguins","authors":"W. Chris Oosthuizen , Stefan Schoombie , Marianna Chimienti , Pierre A. Pistorius , Andrew D. Lowther","doi":"10.1016/j.jembe.2025.152115","DOIUrl":null,"url":null,"abstract":"<div><div>The dive profiles of pursuit-diving marine predators are often used to infer foraging behaviour, including potential indicators of prey consumption. ‘Wiggles’ are undulations in dive profiles that relate to foraging activity in a variety of marine predators. In penguins, wiggles are sometimes used as a proxy for prey consumption (e.g., catch per unit effort, CPUE), but this relationship remains poorly validated and likely varies with diet. We deployed animal-borne video cameras and depth recorders on chinstrap penguins (<em>Pygoscelis antarcticus</em>; <em>n</em> = 37) and identified over 17,000 euphausiid prey captures - mainly Antarctic krill (<em>Euphausia superba</em>) - during dives deeper than 3 m (<em>n</em> = 2458 dives). Using the video-observed prey captures as a reference, we tested how well various wiggle metrics derived from 1 Hz depth data predicted krill consumption by the penguins. Wiggle metrics generally showed a positive but noisy and highly variable relationship with the number of krill captured per dive, with association strength varying among metrics. While it is tempting to infer detailed foraging behaviours from dive wiggles (including ‘bottom distance’ generated by the R package diveMove), our results show: (1) notable rates of foraging – non-foraging dive misclassification; (2) only moderate agreement between CPUE estimated from wiggle counts and video observations; and (3) imprecise predictive models of actual prey consumption. While wiggle analyses offer some insight into prey consumption of krill-feeding penguins, our results suggest that alternative methods (e.g., acceleration-based indices) are needed to obtain more robust quantitative estimates of prey consumption.</div></div>","PeriodicalId":50197,"journal":{"name":"Journal of Experimental Marine Biology and Ecology","volume":"590 ","pages":"Article 152115"},"PeriodicalIF":1.8000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Marine Biology and Ecology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022098125000358","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The dive profiles of pursuit-diving marine predators are often used to infer foraging behaviour, including potential indicators of prey consumption. ‘Wiggles’ are undulations in dive profiles that relate to foraging activity in a variety of marine predators. In penguins, wiggles are sometimes used as a proxy for prey consumption (e.g., catch per unit effort, CPUE), but this relationship remains poorly validated and likely varies with diet. We deployed animal-borne video cameras and depth recorders on chinstrap penguins (Pygoscelis antarcticus; n = 37) and identified over 17,000 euphausiid prey captures - mainly Antarctic krill (Euphausia superba) - during dives deeper than 3 m (n = 2458 dives). Using the video-observed prey captures as a reference, we tested how well various wiggle metrics derived from 1 Hz depth data predicted krill consumption by the penguins. Wiggle metrics generally showed a positive but noisy and highly variable relationship with the number of krill captured per dive, with association strength varying among metrics. While it is tempting to infer detailed foraging behaviours from dive wiggles (including ‘bottom distance’ generated by the R package diveMove), our results show: (1) notable rates of foraging – non-foraging dive misclassification; (2) only moderate agreement between CPUE estimated from wiggle counts and video observations; and (3) imprecise predictive models of actual prey consumption. While wiggle analyses offer some insight into prey consumption of krill-feeding penguins, our results suggest that alternative methods (e.g., acceleration-based indices) are needed to obtain more robust quantitative estimates of prey consumption.
期刊介绍:
The Journal of Experimental Marine Biology and Ecology provides a forum for experimental ecological research on marine organisms in relation to their environment. Topic areas include studies that focus on biochemistry, physiology, behavior, genetics, and ecological theory. The main emphasis of the Journal lies in hypothesis driven experimental work, both from the laboratory and the field. Natural experiments or descriptive studies that elucidate fundamental ecological processes are welcome. Submissions should have a broad ecological framework beyond the specific study organism or geographic region.
Short communications that highlight emerging issues and exciting discoveries within five printed pages will receive a rapid turnaround. Papers describing important new analytical, computational, experimental and theoretical techniques and methods are encouraged and will be highlighted as Methodological Advances. We welcome proposals for Review Papers synthesizing a specific field within marine ecology. Finally, the journal aims to publish Special Issues at regular intervals synthesizing a particular field of marine science. All printed papers undergo a peer review process before being accepted and will receive a first decision within three months.