{"title":"Population dynamics in closed polluted aquatic ecosystems with time-periodic input of toxicants","authors":"Zhenzhen Li, Zhi-An Wang","doi":"10.1016/j.jde.2025.113502","DOIUrl":null,"url":null,"abstract":"<div><div>This paper is concerned with a diffusive population-toxicant system in a polluted aquatic environment with temporally periodic and spatially heterogeneous input of toxicants. By a variety of mathematical tools, such as the principal eigenvalue theory, method of upper-lower solutions, theory of monotone semi-flow, implicit function theorem, etc., we derive sufficient conditions on the existence and global stability of periodic solutions with fixed diffusion rates and explore the asymptotic profiles of positive periodic solutions for large and small diffusion rates. Our results show that if the toxicity of toxicants is low (resp. high), then the aquatic population persists (resp. becomes extinct), while both persistence and extinction may be locally stable (i.e. bi-stability) for moderate toxicity of toxicants. We also find that the spatial distribution of positive periodic solutions with small diffusion rates is quite different from that with large diffusion rates.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"442 ","pages":"Article 113502"},"PeriodicalIF":2.3000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625005297","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper is concerned with a diffusive population-toxicant system in a polluted aquatic environment with temporally periodic and spatially heterogeneous input of toxicants. By a variety of mathematical tools, such as the principal eigenvalue theory, method of upper-lower solutions, theory of monotone semi-flow, implicit function theorem, etc., we derive sufficient conditions on the existence and global stability of periodic solutions with fixed diffusion rates and explore the asymptotic profiles of positive periodic solutions for large and small diffusion rates. Our results show that if the toxicity of toxicants is low (resp. high), then the aquatic population persists (resp. becomes extinct), while both persistence and extinction may be locally stable (i.e. bi-stability) for moderate toxicity of toxicants. We also find that the spatial distribution of positive periodic solutions with small diffusion rates is quite different from that with large diffusion rates.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics