A mathematical modeling of n-state systems

IF 3.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
M. Rahimi , M.R. Mozaffari , A. Tayebi
{"title":"A mathematical modeling of n-state systems","authors":"M. Rahimi ,&nbsp;M.R. Mozaffari ,&nbsp;A. Tayebi","doi":"10.1016/j.physa.2025.130727","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we assign a Riemannian manifold to <span><math><mi>n</mi></math></span>-state systems by using a canonical ensemble in equilibrium statistical mechanics. We consider discrete states with equal intervals, i.e., we assume equal energy intervals between the states of non-interacting particles. Since there are many important quantities on a Riemannian manifold, we may define them for <span><math><mi>n</mi></math></span>-state systems. We define a distance between different equilibrium statistical states of an <span><math><mi>n</mi></math></span>-state system. We also give a lower bound for the mean square error of an unbiased estimator for the temperature of an <span><math><mi>n</mi></math></span>-state system.</div></div>","PeriodicalId":20152,"journal":{"name":"Physica A: Statistical Mechanics and its Applications","volume":"674 ","pages":"Article 130727"},"PeriodicalIF":3.1000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica A: Statistical Mechanics and its Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378437125003796","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we assign a Riemannian manifold to n-state systems by using a canonical ensemble in equilibrium statistical mechanics. We consider discrete states with equal intervals, i.e., we assume equal energy intervals between the states of non-interacting particles. Since there are many important quantities on a Riemannian manifold, we may define them for n-state systems. We define a distance between different equilibrium statistical states of an n-state system. We also give a lower bound for the mean square error of an unbiased estimator for the temperature of an n-state system.
n状态系统的数学模型
本文利用平衡统计力学中的正则系综,将黎曼流形分配给n态系统。我们考虑具有等间隔的离散状态,即,我们假设非相互作用粒子的状态之间的能量间隔相等。由于黎曼流形上有许多重要的量,我们可以为n态系统定义它们。我们定义了n态系统不同平衡统计状态之间的距离。我们也给出了n态系统温度无偏估计的均方误差的下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
9.10%
发文量
852
审稿时长
6.6 months
期刊介绍: Physica A: Statistical Mechanics and its Applications Recognized by the European Physical Society Physica A publishes research in the field of statistical mechanics and its applications. Statistical mechanics sets out to explain the behaviour of macroscopic systems by studying the statistical properties of their microscopic constituents. Applications of the techniques of statistical mechanics are widespread, and include: applications to physical systems such as solids, liquids and gases; applications to chemical and biological systems (colloids, interfaces, complex fluids, polymers and biopolymers, cell physics); and other interdisciplinary applications to for instance biological, economical and sociological systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信