Photoelectrocatalytic coupled chlorine degradation of tetracycline hydrochloride in recirculating aquaculture system (RAS)

IF 4.2 Q2 CHEMISTRY, MULTIDISCIPLINARY
Qikai Liu , Yaqi Mao , Yujie Jiao , Ru Li , Binghua Mian , Peili Li , Jiali Lei , Yang Liu
{"title":"Photoelectrocatalytic coupled chlorine degradation of tetracycline hydrochloride in recirculating aquaculture system (RAS)","authors":"Qikai Liu ,&nbsp;Yaqi Mao ,&nbsp;Yujie Jiao ,&nbsp;Ru Li ,&nbsp;Binghua Mian ,&nbsp;Peili Li ,&nbsp;Jiali Lei ,&nbsp;Yang Liu","doi":"10.1016/j.rechem.2025.102340","DOIUrl":null,"url":null,"abstract":"<div><div>With the rapid development of intensive aquaculture systems, the widespread misuse of antibiotics has raised significant ecological and human health concerns. However, effective methods for antibiotic removal in recirculating aquaculture systems (RAS) remain scarcely reported. This study systematically constructed three distinct degradation systems - photocatalytic (P), photoelectrocatalytic (PE), and photoelectrocatalytic coupled with chlorine (PE-Cl<sup>−</sup>) - based on TiO<sub>2</sub> nanotube arrays for efficient tetracycline hydrochloride (TCH) degradation in RAS. Results demonstrated that the PE-Cl<sup>−</sup> system exhibited superior TCH degradation efficiency, following first-order reaction kinetics. Key operational parameters were optimized, revealing that NaCl concentration (optimal at 30 mM) and acidic conditions (pH = 3, achieving 97.5 % degradation) significantly enhanced system performance, while humic acid (HA), sodium acetate (SA), and actual aquaculture water showed minimal interference. Radical quenching experiments identified hydroxyl radicals (•OH) as the predominant reactive species contributing to TCH degradation. The degradation pathways primarily involved demethylation, hydroxylation, and deamination reactions. Importantly, toxicity assessment using <em>Chlorella vulgaris</em> indicated significantly reduced ecotoxicity of the degradation byproducts (<em>p</em> &lt; 0.001). This study provides both theoretical foundations and practical solutions for addressing persistent organic pollutants in RAS, offering valuable insights for sustainable aquaculture water treatment.</div></div>","PeriodicalId":420,"journal":{"name":"Results in Chemistry","volume":"16 ","pages":"Article 102340"},"PeriodicalIF":4.2000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211715625003236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

With the rapid development of intensive aquaculture systems, the widespread misuse of antibiotics has raised significant ecological and human health concerns. However, effective methods for antibiotic removal in recirculating aquaculture systems (RAS) remain scarcely reported. This study systematically constructed three distinct degradation systems - photocatalytic (P), photoelectrocatalytic (PE), and photoelectrocatalytic coupled with chlorine (PE-Cl) - based on TiO2 nanotube arrays for efficient tetracycline hydrochloride (TCH) degradation in RAS. Results demonstrated that the PE-Cl system exhibited superior TCH degradation efficiency, following first-order reaction kinetics. Key operational parameters were optimized, revealing that NaCl concentration (optimal at 30 mM) and acidic conditions (pH = 3, achieving 97.5 % degradation) significantly enhanced system performance, while humic acid (HA), sodium acetate (SA), and actual aquaculture water showed minimal interference. Radical quenching experiments identified hydroxyl radicals (•OH) as the predominant reactive species contributing to TCH degradation. The degradation pathways primarily involved demethylation, hydroxylation, and deamination reactions. Importantly, toxicity assessment using Chlorella vulgaris indicated significantly reduced ecotoxicity of the degradation byproducts (p < 0.001). This study provides both theoretical foundations and practical solutions for addressing persistent organic pollutants in RAS, offering valuable insights for sustainable aquaculture water treatment.

Abstract Image

循环水养殖系统中光电催化耦合氯降解盐酸四环素的研究
随着集约化水产养殖系统的迅速发展,抗生素的广泛滥用引起了重大的生态和人类健康问题。然而,在循环水养殖系统(RAS)中去除抗生素的有效方法仍然很少报道。本研究系统构建了基于TiO2纳米管阵列的光催化(P)、光电催化(PE)和光电催化-氯耦合(PE- cl−)三种不同降解体系,用于高效降解RAS中的盐酸四环素(TCH)。结果表明,PE-Cl−体系具有较好的TCH降解效率,符合一级反应动力学。通过对关键操作参数的优化,发现NaCl浓度(最佳浓度为30 mM)和酸性条件(pH = 3,降解率为97.5%)显著提高了系统性能,腐植酸(HA)、乙酸钠(SA)和实际养殖水体的干扰最小。自由基猝灭实验表明,羟基自由基(•OH)是促进TCH降解的主要活性物质。降解途径主要包括去甲基化、羟基化和脱氨反应。重要的是,使用小球藻进行毒性评估表明,降解副产物的生态毒性显著降低(p <;0.001)。本研究为解决RAS中持久性有机污染物提供了理论基础和实践解决方案,为水产养殖水的可持续处理提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Chemistry
Results in Chemistry Chemistry-Chemistry (all)
CiteScore
2.70
自引率
8.70%
发文量
380
审稿时长
56 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信