Estimating childhood tuberculosis incidence and under-reporting in Gedeo Zone, Ethiopia: a Bayesian hidden Markov model

IF 1.7 Q4 INFECTIOUS DISEASES
Solomon Hailemariam Tesfaye , Tsion Mulat Tebeje , Daneil Sisay , Mektew Belete , Yohannes Kifle , Asresu Feleke , Abinet Meno
{"title":"Estimating childhood tuberculosis incidence and under-reporting in Gedeo Zone, Ethiopia: a Bayesian hidden Markov model","authors":"Solomon Hailemariam Tesfaye ,&nbsp;Tsion Mulat Tebeje ,&nbsp;Daneil Sisay ,&nbsp;Mektew Belete ,&nbsp;Yohannes Kifle ,&nbsp;Asresu Feleke ,&nbsp;Abinet Meno","doi":"10.1016/j.ijregi.2025.100673","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><div>To estimate the incidence and under-reported cases of childhood tuberculosis (TB) in rural Ethiopia.</div></div><div><h3>Methods</h3><div>We used a Bayesian hidden Markov model with Spatio-temporal random effects to analyze TB notification data from rural areas between 2018 and 2023. Spatial dependence and HIV infection were included as covariates for estimating TB incidence, while the availability of diagnostic services informed the case detection process. Sensitivity analysis were conducted to assess the robustness of the results with alternative prior distributions.</div></div><div><h3>Results</h3><div>Childhood TB incidence in the Gedeo Zone increased from 141 cases per 100,000 population (95% uncertainty interval: 96-193) in 2018 to 157 cases (95% uncertainty interval: 114-207) in 2023. Estimated case detection rates ranged from 56 cases per 100,000 in 2018 to 62 in 2023, indicating substantial under-reporting. Spatial lags of TB notifications predicted incidence in adjacent areas. Sensitivity analysis confirmed result robustness.</div></div><div><h3>Conclusions</h3><div>The gap between estimated TB incidence and reported cases highlights the urgent need to strengthen TB surveillance in the study area.</div></div>","PeriodicalId":73335,"journal":{"name":"IJID regions","volume":"15 ","pages":"Article 100673"},"PeriodicalIF":1.7000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJID regions","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772707625001080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives

To estimate the incidence and under-reported cases of childhood tuberculosis (TB) in rural Ethiopia.

Methods

We used a Bayesian hidden Markov model with Spatio-temporal random effects to analyze TB notification data from rural areas between 2018 and 2023. Spatial dependence and HIV infection were included as covariates for estimating TB incidence, while the availability of diagnostic services informed the case detection process. Sensitivity analysis were conducted to assess the robustness of the results with alternative prior distributions.

Results

Childhood TB incidence in the Gedeo Zone increased from 141 cases per 100,000 population (95% uncertainty interval: 96-193) in 2018 to 157 cases (95% uncertainty interval: 114-207) in 2023. Estimated case detection rates ranged from 56 cases per 100,000 in 2018 to 62 in 2023, indicating substantial under-reporting. Spatial lags of TB notifications predicted incidence in adjacent areas. Sensitivity analysis confirmed result robustness.

Conclusions

The gap between estimated TB incidence and reported cases highlights the urgent need to strengthen TB surveillance in the study area.
估计埃塞俄比亚Gedeo地区儿童结核病发病率和漏报:贝叶斯隐马尔可夫模型
目的了解埃塞俄比亚农村儿童结核病(TB)的发病率和漏报病例。方法采用具有时空随机效应的贝叶斯隐马尔可夫模型对2018 - 2023年农村地区结核病通报数据进行分析。空间依赖性和艾滋病毒感染被作为估计结核病发病率的协变量,而诊断服务的可获得性为病例发现过程提供了信息。进行敏感性分析以评估具有替代先验分布的结果的稳健性。结果吉德奥地区儿童结核病发病率从2018年的每10万人141例(95%不确定区间:96 ~ 193)上升至2023年的157例(95%不确定区间:114 ~ 207)。估计病例检出率从2018年的每10万人56例到2023年的62例不等,表明严重漏报。结核病通报的空间滞后预测了邻近地区的发病率。敏感性分析证实了结果的稳健性。结论该地区结核病发病率与报告病例的差距凸显了加强结核病监测的迫切需要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IJID regions
IJID regions Infectious Diseases
CiteScore
1.60
自引率
0.00%
发文量
0
审稿时长
64 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信