{"title":"Purification of astrazon pink FG and brilliant Red B contaminated water using zeolitic imidazolate framework enhanced potassium ferrite","authors":"Adewale Adewuyi , Rotimi A Oderinde","doi":"10.1016/j.chphi.2025.100892","DOIUrl":null,"url":null,"abstract":"<div><div>Adsorption and photocatalysis are known methods for removing dyes from aqueous systems. However, they may suffer from shortcomings like poor dye removal, high cost, poor adsorbent/catalyst regeneration and poor adsorbent/catalyst recovery. Therefore, a zeolitic imidazolate framework enhanced potassium ferrite (KFe<sub>2</sub>O<sub>4</sub>@<sub>mono</sub>ZIF-8) was prepared to remove astrazon pink FG (AP) and brilliant Red B (BR) dyes from the water system. The characterization results of KFe<sub>2</sub>O<sub>4</sub>@<sub>mono</sub>ZIF-8 revealed a well-structured diffraction pattern with a crystallite size of 31.24 nm and an energy bandgap of 1.87 eV. The scanning electron micrograph image revealed a homogeneous surface with similarly shaped particles of different sizes. At the same time, the energy-dispersive X-ray spectroscopy and elemental mapping confirmed the component elements to be K, Fe, O, C and Zn. Interestingly, KFe<sub>2</sub>O<sub>4</sub>@<sub>mono</sub>ZIF-8 functions as an adsorbent and a photocatalyst. The adsorption of AP and BR by KFe<sub>2</sub>O<sub>4</sub>@<sub>mono</sub>ZIF-8 in the absence of visible light revealed an equilibrium sorption capacity of 17.85±0.8 and 15.00±0.8 mg g<sup>-1</sup>, respectively, in a process described by pseudo-2nd-order kinetic model. Furthermore, when subjected to photocatalytic degradation under visible light irradiation, the removal efficiencies towards AP and BR became 98.80±1.20 and 95.2 ± 1.30 %, respectively. KFe<sub>2</sub>O<sub>4</sub>@<sub>mono</sub>ZIF-8 in a binary mixed solution of AP and BR exhibited a photodegradation efficiency of 78.00±1.10 and 70.00±1.10 % towards AP and BR, respectively. In addition, KFe<sub>2</sub>O<sub>4</sub>@<sub>mono</sub>ZIF-8 exhibited a regeneration capacity above 70 % at the 7th regeneration treatment cycle. KFe<sub>2</sub>O<sub>4</sub>@<sub>mono</sub>ZIF-8 compared favourably with previously published materials for removing dyes in an aqueous solution. This study revealed KFe<sub>2</sub>O<sub>4</sub>@<sub>mono</sub>ZIF-8 as a promising material for removing dyes from the water system.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"11 ","pages":"Article 100892"},"PeriodicalIF":4.3000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics Impact","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667022425000799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Adsorption and photocatalysis are known methods for removing dyes from aqueous systems. However, they may suffer from shortcomings like poor dye removal, high cost, poor adsorbent/catalyst regeneration and poor adsorbent/catalyst recovery. Therefore, a zeolitic imidazolate framework enhanced potassium ferrite (KFe2O4@monoZIF-8) was prepared to remove astrazon pink FG (AP) and brilliant Red B (BR) dyes from the water system. The characterization results of KFe2O4@monoZIF-8 revealed a well-structured diffraction pattern with a crystallite size of 31.24 nm and an energy bandgap of 1.87 eV. The scanning electron micrograph image revealed a homogeneous surface with similarly shaped particles of different sizes. At the same time, the energy-dispersive X-ray spectroscopy and elemental mapping confirmed the component elements to be K, Fe, O, C and Zn. Interestingly, KFe2O4@monoZIF-8 functions as an adsorbent and a photocatalyst. The adsorption of AP and BR by KFe2O4@monoZIF-8 in the absence of visible light revealed an equilibrium sorption capacity of 17.85±0.8 and 15.00±0.8 mg g-1, respectively, in a process described by pseudo-2nd-order kinetic model. Furthermore, when subjected to photocatalytic degradation under visible light irradiation, the removal efficiencies towards AP and BR became 98.80±1.20 and 95.2 ± 1.30 %, respectively. KFe2O4@monoZIF-8 in a binary mixed solution of AP and BR exhibited a photodegradation efficiency of 78.00±1.10 and 70.00±1.10 % towards AP and BR, respectively. In addition, KFe2O4@monoZIF-8 exhibited a regeneration capacity above 70 % at the 7th regeneration treatment cycle. KFe2O4@monoZIF-8 compared favourably with previously published materials for removing dyes in an aqueous solution. This study revealed KFe2O4@monoZIF-8 as a promising material for removing dyes from the water system.