Mincheol Kim , Hyuk Jin Kim , Byoung Ki Choi , Tae Gyu Rhee , Chris Jozwiak , Aaron Bostwick , Eli Rotenberg , Sunghun Lee , Young Jun Chang
{"title":"Dirac nodal line and pseudo-gap in 1T-VS2 single crystal","authors":"Mincheol Kim , Hyuk Jin Kim , Byoung Ki Choi , Tae Gyu Rhee , Chris Jozwiak , Aaron Bostwick , Eli Rotenberg , Sunghun Lee , Young Jun Chang","doi":"10.1016/j.cap.2025.06.005","DOIUrl":null,"url":null,"abstract":"<div><div>Vanadium disulfide (VS<sub>2</sub>), one of transition metal dichalcogenide (TMDC) family, attracts elevated interests for its charge-density wave phase transition, ferromagnetism, optoelectronic switching, and catalytic reactivity, but the topological Dirac surface states have not been observed yet. Here we report the Dirac nodal line states of VS<sub>2</sub> single crystals via angle-resolved photoemission spectroscopy (ARPES) measurements. ARPES analysis reveals that Dirac nodal line surface states are extended from the Μ point toward the Γ point with energy of −1.1 eV. Comparison with the other vanadium chalcogenides shows monotonic energy shift of the Dirac states depending on the spin-orbit coupling strength of the chalcogen atoms. Furthermore, we studied the temperature-dependence of pseudo gaps near both the M and Γ points. Our observations provide experimental evidence of topological electronic structures, contributing to the understanding of the correlated TMDC systems and their potential in switching devices, optical saturable absorber, and electrocatalysis.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"77 ","pages":"Pages 94-99"},"PeriodicalIF":2.4000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567173925001245","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Vanadium disulfide (VS2), one of transition metal dichalcogenide (TMDC) family, attracts elevated interests for its charge-density wave phase transition, ferromagnetism, optoelectronic switching, and catalytic reactivity, but the topological Dirac surface states have not been observed yet. Here we report the Dirac nodal line states of VS2 single crystals via angle-resolved photoemission spectroscopy (ARPES) measurements. ARPES analysis reveals that Dirac nodal line surface states are extended from the Μ point toward the Γ point with energy of −1.1 eV. Comparison with the other vanadium chalcogenides shows monotonic energy shift of the Dirac states depending on the spin-orbit coupling strength of the chalcogen atoms. Furthermore, we studied the temperature-dependence of pseudo gaps near both the M and Γ points. Our observations provide experimental evidence of topological electronic structures, contributing to the understanding of the correlated TMDC systems and their potential in switching devices, optical saturable absorber, and electrocatalysis.
期刊介绍:
Current Applied Physics (Curr. Appl. Phys.) is a monthly published international journal covering all the fields of applied science investigating the physics of the advanced materials for future applications.
Other areas covered: Experimental and theoretical aspects of advanced materials and devices dealing with synthesis or structural chemistry, physical and electronic properties, photonics, engineering applications, and uniquely pertinent measurement or analytical techniques.
Current Applied Physics, published since 2001, covers physics, chemistry and materials science, including bio-materials, with their engineering aspects. It is a truly interdisciplinary journal opening a forum for scientists of all related fields, a unique point of the journal discriminating it from other worldwide and/or Pacific Rim applied physics journals.
Regular research papers, letters and review articles with contents meeting the scope of the journal will be considered for publication after peer review.
The Journal is owned by the Korean Physical Society.