The asymptotics for the shifted convolutions of a class of multiplicative functions

IF 0.6 3区 数学 Q3 MATHEMATICS
Chengchao Huang , Guangshi Lü
{"title":"The asymptotics for the shifted convolutions of a class of multiplicative functions","authors":"Chengchao Huang ,&nbsp;Guangshi Lü","doi":"10.1016/j.jnt.2025.04.017","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>F</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> be a multiplicative function and its Dirichlet series <span><math><mi>F</mi><mo>(</mo><mi>s</mi><mo>)</mo><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></msubsup><mfrac><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mi>F</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mrow><msup><mrow><mi>n</mi></mrow><mrow><mi>s</mi></mrow></msup></mrow></mfrac></math></span> satisfies three reasonable conditions. We establish an asymptotic formula of shifted sum of the form<span><span><span><math><munder><mo>∑</mo><mrow><mi>X</mi><mo>≤</mo><mi>n</mi><mo>≤</mo><mn>2</mn><mi>X</mi></mrow></munder><msub><mrow><mi>λ</mi></mrow><mrow><mi>F</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mover><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mi>F</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>+</mo><mi>h</mi><mo>)</mo></mrow><mo>‾</mo></mover></math></span></span></span>for almost all <span><math><mi>h</mi><mo>∈</mo><mo>[</mo><mn>1</mn><mo>,</mo><mi>H</mi><mo>]</mo></math></span>, provided that <span><math><msup><mrow><mi>X</mi></mrow><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mi>ε</mi></mrow></msup><mo>≤</mo><mi>H</mi><mo>≤</mo><msup><mrow><mi>X</mi></mrow><mrow><mn>1</mn><mo>−</mo><mi>ε</mi></mrow></msup></math></span>, where <span><math><mn>0</mn><mo>≤</mo><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>&lt;</mo><mn>1</mn></math></span> is a constant that is only related to <span><math><mi>F</mi></math></span>. Let <span><math><msub><mrow><mo>{</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>f</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>}</mo></mrow><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></msub></math></span> be normalized Hecke eigenvalues of a holomorphic cusp form <em>f</em>. As applications, we consider a few special cases, including <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>⁎</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi><mo>,</mo><mi>f</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span>, <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi><mo>,</mo><mi>f</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span>, and <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><msubsup><mrow><mi>λ</mi></mrow><mrow><mi>f</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>(</mo><mi>n</mi><mo>)</mo></math></span>, where <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi><mo>,</mo><mi>f</mi></mrow></msub><mo>=</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>f</mi></mrow></msub><mo>⁎</mo><mo>⋯</mo><mo>⁎</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>f</mi></mrow></msub></math></span> is the <em>i</em>-fold convolution of <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>f</mi></mrow></msub></math></span>, <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> is the <em>k</em>th divisor function. Further, under a mild hypothesis, we see that <span><math><msubsup><mrow><mi>λ</mi></mrow><mrow><mi>f</mi></mrow><mrow><mi>ℓ</mi></mrow></msubsup><mo>(</mo><mi>n</mi><mo>)</mo></math></span> is also within our range of results.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"278 ","pages":"Pages 128-177"},"PeriodicalIF":0.6000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X25001593","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let λF(n) be a multiplicative function and its Dirichlet series F(s)=n=1λF(n)ns satisfies three reasonable conditions. We establish an asymptotic formula of shifted sum of the formXn2XλF(n)λF(n+h)for almost all h[1,H], provided that Xs1+εHX1ε, where 0s1<1 is a constant that is only related to F. Let {λf(n)}n1 be normalized Hecke eigenvalues of a holomorphic cusp form f. As applications, we consider a few special cases, including dk(n)λi,f(n), dk(n)λi,f(n), and dk(n)λf2(n), where λi,f=λfλf is the i-fold convolution of λf, dk is the kth divisor function. Further, under a mild hypothesis, we see that λf(n) is also within our range of results.
一类乘法函数的移位卷积的渐近性
设λF(n)为一个乘法函数,其狄利克雷级数F(s)=∑n=1∞λF(n)ns满足三个合理条件。对于几乎所有h∈[1,h],我们建立了∑X≤n≤2XλF(n)λF(n+h)形式的移位和的渐近公式,假设Xs1+ε≤h≤X1 - ε,其中0≤s1<;1是一个只与f相关的常数,设{λF(n)}n≥1是一个全纯顶点形式f的归一化Hecke特征值。作为应用,我们考虑了一些特殊情况,包括dk(n)λ λi,f(n), dk(n)λi,f(n), f(n),和dk(n)λf2(n),其中λi,f= λF是λF的i-fold卷积,dk是第k个除数函数。此外,在一个温和的假设下,我们看到λf (n)也在我们的结果范围内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Number Theory
Journal of Number Theory 数学-数学
CiteScore
1.30
自引率
14.30%
发文量
122
审稿时长
16 weeks
期刊介绍: The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field. The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory. Starting in May 2019, JNT will have a new format with 3 sections: JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access. JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions. Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信