{"title":"The asymptotics for the shifted convolutions of a class of multiplicative functions","authors":"Chengchao Huang , Guangshi Lü","doi":"10.1016/j.jnt.2025.04.017","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>F</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> be a multiplicative function and its Dirichlet series <span><math><mi>F</mi><mo>(</mo><mi>s</mi><mo>)</mo><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></msubsup><mfrac><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mi>F</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mrow><msup><mrow><mi>n</mi></mrow><mrow><mi>s</mi></mrow></msup></mrow></mfrac></math></span> satisfies three reasonable conditions. We establish an asymptotic formula of shifted sum of the form<span><span><span><math><munder><mo>∑</mo><mrow><mi>X</mi><mo>≤</mo><mi>n</mi><mo>≤</mo><mn>2</mn><mi>X</mi></mrow></munder><msub><mrow><mi>λ</mi></mrow><mrow><mi>F</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mover><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mi>F</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>+</mo><mi>h</mi><mo>)</mo></mrow><mo>‾</mo></mover></math></span></span></span>for almost all <span><math><mi>h</mi><mo>∈</mo><mo>[</mo><mn>1</mn><mo>,</mo><mi>H</mi><mo>]</mo></math></span>, provided that <span><math><msup><mrow><mi>X</mi></mrow><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mi>ε</mi></mrow></msup><mo>≤</mo><mi>H</mi><mo>≤</mo><msup><mrow><mi>X</mi></mrow><mrow><mn>1</mn><mo>−</mo><mi>ε</mi></mrow></msup></math></span>, where <span><math><mn>0</mn><mo>≤</mo><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mo><</mo><mn>1</mn></math></span> is a constant that is only related to <span><math><mi>F</mi></math></span>. Let <span><math><msub><mrow><mo>{</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>f</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>}</mo></mrow><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></msub></math></span> be normalized Hecke eigenvalues of a holomorphic cusp form <em>f</em>. As applications, we consider a few special cases, including <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>⁎</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi><mo>,</mo><mi>f</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span>, <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi><mo>,</mo><mi>f</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span>, and <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><msubsup><mrow><mi>λ</mi></mrow><mrow><mi>f</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>(</mo><mi>n</mi><mo>)</mo></math></span>, where <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi><mo>,</mo><mi>f</mi></mrow></msub><mo>=</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>f</mi></mrow></msub><mo>⁎</mo><mo>⋯</mo><mo>⁎</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>f</mi></mrow></msub></math></span> is the <em>i</em>-fold convolution of <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>f</mi></mrow></msub></math></span>, <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> is the <em>k</em>th divisor function. Further, under a mild hypothesis, we see that <span><math><msubsup><mrow><mi>λ</mi></mrow><mrow><mi>f</mi></mrow><mrow><mi>ℓ</mi></mrow></msubsup><mo>(</mo><mi>n</mi><mo>)</mo></math></span> is also within our range of results.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"278 ","pages":"Pages 128-177"},"PeriodicalIF":0.6000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X25001593","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let be a multiplicative function and its Dirichlet series satisfies three reasonable conditions. We establish an asymptotic formula of shifted sum of the formfor almost all , provided that , where is a constant that is only related to . Let be normalized Hecke eigenvalues of a holomorphic cusp form f. As applications, we consider a few special cases, including , , and , where is the i-fold convolution of , is the kth divisor function. Further, under a mild hypothesis, we see that is also within our range of results.
期刊介绍:
The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field.
The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory.
Starting in May 2019, JNT will have a new format with 3 sections:
JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access.
JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions.
Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.