Elizabeth Ospina-Rojas , Juan Botero-Valencia , Daniel Betancur-Vasquez , Joshua M. Pearce
{"title":"Open-source three-dimensional IoT anemometer for indoor air quality monitoring","authors":"Elizabeth Ospina-Rojas , Juan Botero-Valencia , Daniel Betancur-Vasquez , Joshua M. Pearce","doi":"10.1016/j.ohx.2025.e00656","DOIUrl":null,"url":null,"abstract":"<div><div>Ventilation in an enclosed space can significantly influence people’s comfort, health, and safety. Poor ventilation can generate temperatures dangerous to health or obstruct the dispersion of environmental pollutants, such as toxic gases or pollution. Measuring indoor environmental conditions can thus help improve the quality of the environment and protect people’s health and comfort. This work proposes the design of an open-source anemometer to measure wind speed and direction in three dimensions. The purpose of this anemometer is to monitor wind conditions in enclosed spaces and environmental conditions related to air quality and temperature. The prototype uses an array of six unidirectional flow sensors, each pointing towards a different axis. Carbon dioxide (CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>), volatile organic compounds (VOC), temperature, humidity, pressure, and gas presence sensors are integrated to monitor indoor environmental conditions accurately. Measuring the vertical component of the wind provides more detailed information on wind conditions. Test results show that the device can detect variations in wind speed with a deviation of 0.25 m/s, detect changes in horizontal wind direction with a deviation of 3.7°, and detect vertical wind direction variations with a deviation of 3.02°. These measurements demonstrate that the proposed device is capable of detecting wind changes in three dimensions, validating its potential for detailed indoor airflow monitoring.</div></div>","PeriodicalId":37503,"journal":{"name":"HardwareX","volume":"23 ","pages":"Article e00656"},"PeriodicalIF":2.1000,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HardwareX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468067225000343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Ventilation in an enclosed space can significantly influence people’s comfort, health, and safety. Poor ventilation can generate temperatures dangerous to health or obstruct the dispersion of environmental pollutants, such as toxic gases or pollution. Measuring indoor environmental conditions can thus help improve the quality of the environment and protect people’s health and comfort. This work proposes the design of an open-source anemometer to measure wind speed and direction in three dimensions. The purpose of this anemometer is to monitor wind conditions in enclosed spaces and environmental conditions related to air quality and temperature. The prototype uses an array of six unidirectional flow sensors, each pointing towards a different axis. Carbon dioxide (CO), volatile organic compounds (VOC), temperature, humidity, pressure, and gas presence sensors are integrated to monitor indoor environmental conditions accurately. Measuring the vertical component of the wind provides more detailed information on wind conditions. Test results show that the device can detect variations in wind speed with a deviation of 0.25 m/s, detect changes in horizontal wind direction with a deviation of 3.7°, and detect vertical wind direction variations with a deviation of 3.02°. These measurements demonstrate that the proposed device is capable of detecting wind changes in three dimensions, validating its potential for detailed indoor airflow monitoring.
HardwareXEngineering-Industrial and Manufacturing Engineering
CiteScore
4.10
自引率
18.20%
发文量
124
审稿时长
24 weeks
期刊介绍:
HardwareX is an open access journal established to promote free and open source designing, building and customizing of scientific infrastructure (hardware). HardwareX aims to recognize researchers for the time and effort in developing scientific infrastructure while providing end-users with sufficient information to replicate and validate the advances presented. HardwareX is open to input from all scientific, technological and medical disciplines. Scientific infrastructure will be interpreted in the broadest sense. Including hardware modifications to existing infrastructure, sensors and tools that perform measurements and other functions outside of the traditional lab setting (such as wearables, air/water quality sensors, and low cost alternatives to existing tools), and the creation of wholly new tools for either standard or novel laboratory tasks. Authors are encouraged to submit hardware developments that address all aspects of science, not only the final measurement, for example, enhancements in sample preparation and handling, user safety, and quality control. The use of distributed digital manufacturing strategies (e.g. 3-D printing) is encouraged. All designs must be submitted under an open hardware license.