Packing of the k-power of Hamilton cycles

IF 0.7 3区 数学 Q2 MATHEMATICS
Wanfang Chen, Changhong Lu, Qi Wu, Long-Tu Yuan
{"title":"Packing of the k-power of Hamilton cycles","authors":"Wanfang Chen,&nbsp;Changhong Lu,&nbsp;Qi Wu,&nbsp;Long-Tu Yuan","doi":"10.1016/j.disc.2025.114630","DOIUrl":null,"url":null,"abstract":"<div><div>The <em>k</em>-power of a Hamilton cycle is obtained from it by adding edges between all two vertices whose distance in it is at most <em>k</em>. For sufficiently large <em>n</em>, we determine the maximum number of edges of an <em>n</em>-vertex graph without containing the <em>k</em>-power of a Hamilton cycle, and identify all <em>n</em>-vertex graphs with at most <span><math><mi>n</mi><mo>−</mo><mn>2</mn><mi>k</mi><mo>+</mo><mi>ℓ</mi></math></span> edges which do not pack with the <em>k</em>-power of a Hamilton cycle.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 12","pages":"Article 114630"},"PeriodicalIF":0.7000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25002389","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The k-power of a Hamilton cycle is obtained from it by adding edges between all two vertices whose distance in it is at most k. For sufficiently large n, we determine the maximum number of edges of an n-vertex graph without containing the k-power of a Hamilton cycle, and identify all n-vertex graphs with at most n2k+ edges which do not pack with the k-power of a Hamilton cycle.
汉密尔顿环的k-幂的包装
Hamilton环的k次幂是通过在其中距离不超过k的所有两个顶点之间添加边而得到的。对于足够大的n,我们确定了不包含Hamilton环k次的n顶点图的最大边数,并确定了所有不包含Hamilton环k次的n顶点图的最多n−2k+ l条边。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信