Almost reducibility and growth of Sobolev norms of 1−d quantum harmonic oscillator with polynomial time quasi-periodic perturbations

IF 1.2 3区 数学 Q1 MATHEMATICS
Yue Mi
{"title":"Almost reducibility and growth of Sobolev norms of 1−d quantum harmonic oscillator with polynomial time quasi-periodic perturbations","authors":"Yue Mi","doi":"10.1016/j.jmaa.2025.129751","DOIUrl":null,"url":null,"abstract":"<div><div>For 1–d quantum harmonic oscillator perturbed by a time quasi-periodic non-homogeneous quadratic polynomials in <span><math><mo>(</mo><mi>x</mi><mo>,</mo><mo>−</mo><mi>i</mi><msub><mrow><mo>∂</mo></mrow><mrow><mi>x</mi></mrow></msub><mo>)</mo></math></span>, we prove its almost reducibility. Based on this theory, we have shown the growth of Sobolev norms of solutions. In fact it will have an <span><math><mi>o</mi><mo>(</mo><msup><mrow><mi>t</mi></mrow><mrow><mi>s</mi></mrow></msup><mo>)</mo></math></span>-upper bound for the <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow></msup></math></span>-norm when the equation is non-reducible. The results are proved via the utilization of Schrödinger and Metaplectic representation.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 2","pages":"Article 129751"},"PeriodicalIF":1.2000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25005323","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For 1–d quantum harmonic oscillator perturbed by a time quasi-periodic non-homogeneous quadratic polynomials in (x,ix), we prove its almost reducibility. Based on this theory, we have shown the growth of Sobolev norms of solutions. In fact it will have an o(ts)-upper bound for the Hs-norm when the equation is non-reducible. The results are proved via the utilization of Schrödinger and Metaplectic representation.
具有多项式时间准周期扰动的1−d量子谐振子Sobolev范数的几乎可约性和增长
对于(x, - i∂x)中一个准周期非齐次二次多项式摄动的一维量子谐振子,我们证明了它的几乎可约性。基于这一理论,我们证明了解的Sobolev范数的增长。事实上,当方程不可约时,hs -范数有0 (ts)-上界。利用Schrödinger和元表象证明了这些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信