Spectrum for a weighted one-dimensional fractional Laplace operator

IF 2.4 2区 数学 Q1 MATHEMATICS
Bianxia Yang , Zhijiang Zhang , Ruyun Ma
{"title":"Spectrum for a weighted one-dimensional fractional Laplace operator","authors":"Bianxia Yang ,&nbsp;Zhijiang Zhang ,&nbsp;Ruyun Ma","doi":"10.1016/j.jde.2025.113501","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study the spectrum of the one-dimensional fractional Laplace operator with a definite weight<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><msup><mrow><mo>(</mo><mo>−</mo><mfrac><mrow><msup><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mi>d</mi><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><mo>)</mo></mrow><mrow><mi>α</mi></mrow></msup><mi>u</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>λ</mi><mi>a</mi><mo>(</mo><mi>x</mi><mo>)</mo><mi>u</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mi>x</mi><mo>∈</mo><mo>(</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mn>0</mn><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mi>x</mi><mspace></mspace><mspace></mspace><mtext>in</mtext><mspace></mspace><mi>R</mi><mo>∖</mo><mo>(</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> where <span><math><mi>α</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo><mo>,</mo><mi>a</mi><mo>∈</mo><mi>C</mi><mo>(</mo><mo>[</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>]</mo><mo>,</mo><mo>[</mo><mn>0</mn><mo>,</mo><mo>+</mo><mo>∞</mo><mo>)</mo><mo>)</mo></math></span> and <span><math><msup><mrow><mo>(</mo><mo>−</mo><mfrac><mrow><msup><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mi>d</mi><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><mo>)</mo></mrow><mrow><mi>α</mi></mrow></msup></math></span> is the one-dimensional fractional Laplace nonlocal operator. By virtue of Γ-convergence arguments, we investigate, in the singular limit, that the eigenvalue and eigenfunction of the nonlocal operator converge to those of the corresponding classical second-order two-point boundary value problem in the first place, and then, building upon the continuity of the eigenvalues and eigenfunctions as a function of fractional index, we derive the simplicity of the eigenvalues of the fractional Laplace nonlocal operator for all fractional index <span><math><mi>α</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span> by adopting a stet-by-step iterative approach. Furthermore, using the <em>α</em>-harmonic extension, we receive that the corresponding eigenfunction <span><math><msubsup><mrow><mi>φ</mi></mrow><mrow><mi>k</mi></mrow><mrow><mi>α</mi></mrow></msubsup></math></span> has at most <span><math><mn>2</mn><mi>k</mi><mo>−</mo><mn>2</mn></math></span> zeros in <span><math><mo>(</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>. At last, from an experiment point of view, we give the numerical eigenvalues and eigenfunctions of the weighted fractional Laplace problem by means of the finite element method in some special cases, which enriches the theoretical results. The spectral results presented here, especially the simplicity of eigenvalues <span><math><msubsup><mrow><mi>λ</mi></mrow><mrow><mi>k</mi></mrow><mrow><mi>α</mi></mrow></msubsup></math></span> resolve a conjecture of Bañuelos and Kulczycki.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"443 ","pages":"Article 113501"},"PeriodicalIF":2.4000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625005285","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the spectrum of the one-dimensional fractional Laplace operator with a definite weight{(d2dx2)αu(x)=λa(x)u(x),x(1,1),u(x)=0,xinR(1,1), where α(0,1),aC([1,1],[0,+)) and (d2dx2)α is the one-dimensional fractional Laplace nonlocal operator. By virtue of Γ-convergence arguments, we investigate, in the singular limit, that the eigenvalue and eigenfunction of the nonlocal operator converge to those of the corresponding classical second-order two-point boundary value problem in the first place, and then, building upon the continuity of the eigenvalues and eigenfunctions as a function of fractional index, we derive the simplicity of the eigenvalues of the fractional Laplace nonlocal operator for all fractional index α(0,1) by adopting a stet-by-step iterative approach. Furthermore, using the α-harmonic extension, we receive that the corresponding eigenfunction φkα has at most 2k2 zeros in (1,1). At last, from an experiment point of view, we give the numerical eigenvalues and eigenfunctions of the weighted fractional Laplace problem by means of the finite element method in some special cases, which enriches the theoretical results. The spectral results presented here, especially the simplicity of eigenvalues λkα resolve a conjecture of Bañuelos and Kulczycki.
一维加权分数拉普拉斯算子的谱
本文研究了具有确定权值{(−d2dx2)αu(x)=λa(x)u(x),x∈(−1,1),u(x)=0,xinR∈(−1,1)的一维分数阶拉普拉斯算子的谱,其中α∈(0,1),a∈C([−1,1],[0,+∞))和(−d2dx2)α是一维分数阶拉普拉斯非局部算子。借助于Γ-convergence论证,我们首先研究了在奇异极限下非局部算子的特征值和特征函数收敛于相应的经典二阶两点边值问题的特征值和特征函数,然后,基于特征值和特征函数作为分数指数函数的连续性,对于所有分数指数α∈(0,1),我们采用一步一步迭代的方法推导出分数阶拉普拉斯非局部算子特征值的简单性。进一步利用α-谐波推广,得到了相应的特征函数φkα在(- 1,1)中最多有2k−2个零。最后,从实验的角度出发,用有限元法给出了一些特殊情况下加权分数阶拉普拉斯问题的数值特征值和特征函数,丰富了理论结果。本文给出的谱结果,特别是特征值λkα的简单性,解决了Bañuelos和Kulczycki的一个猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信