{"title":"Spectrum for a weighted one-dimensional fractional Laplace operator","authors":"Bianxia Yang , Zhijiang Zhang , Ruyun Ma","doi":"10.1016/j.jde.2025.113501","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study the spectrum of the one-dimensional fractional Laplace operator with a definite weight<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><msup><mrow><mo>(</mo><mo>−</mo><mfrac><mrow><msup><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mi>d</mi><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><mo>)</mo></mrow><mrow><mi>α</mi></mrow></msup><mi>u</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>λ</mi><mi>a</mi><mo>(</mo><mi>x</mi><mo>)</mo><mi>u</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mi>x</mi><mo>∈</mo><mo>(</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mn>0</mn><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mi>x</mi><mspace></mspace><mspace></mspace><mtext>in</mtext><mspace></mspace><mi>R</mi><mo>∖</mo><mo>(</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> where <span><math><mi>α</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo><mo>,</mo><mi>a</mi><mo>∈</mo><mi>C</mi><mo>(</mo><mo>[</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>]</mo><mo>,</mo><mo>[</mo><mn>0</mn><mo>,</mo><mo>+</mo><mo>∞</mo><mo>)</mo><mo>)</mo></math></span> and <span><math><msup><mrow><mo>(</mo><mo>−</mo><mfrac><mrow><msup><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mi>d</mi><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><mo>)</mo></mrow><mrow><mi>α</mi></mrow></msup></math></span> is the one-dimensional fractional Laplace nonlocal operator. By virtue of Γ-convergence arguments, we investigate, in the singular limit, that the eigenvalue and eigenfunction of the nonlocal operator converge to those of the corresponding classical second-order two-point boundary value problem in the first place, and then, building upon the continuity of the eigenvalues and eigenfunctions as a function of fractional index, we derive the simplicity of the eigenvalues of the fractional Laplace nonlocal operator for all fractional index <span><math><mi>α</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span> by adopting a stet-by-step iterative approach. Furthermore, using the <em>α</em>-harmonic extension, we receive that the corresponding eigenfunction <span><math><msubsup><mrow><mi>φ</mi></mrow><mrow><mi>k</mi></mrow><mrow><mi>α</mi></mrow></msubsup></math></span> has at most <span><math><mn>2</mn><mi>k</mi><mo>−</mo><mn>2</mn></math></span> zeros in <span><math><mo>(</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>. At last, from an experiment point of view, we give the numerical eigenvalues and eigenfunctions of the weighted fractional Laplace problem by means of the finite element method in some special cases, which enriches the theoretical results. The spectral results presented here, especially the simplicity of eigenvalues <span><math><msubsup><mrow><mi>λ</mi></mrow><mrow><mi>k</mi></mrow><mrow><mi>α</mi></mrow></msubsup></math></span> resolve a conjecture of Bañuelos and Kulczycki.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"443 ","pages":"Article 113501"},"PeriodicalIF":2.4000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625005285","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we study the spectrum of the one-dimensional fractional Laplace operator with a definite weight where and is the one-dimensional fractional Laplace nonlocal operator. By virtue of Γ-convergence arguments, we investigate, in the singular limit, that the eigenvalue and eigenfunction of the nonlocal operator converge to those of the corresponding classical second-order two-point boundary value problem in the first place, and then, building upon the continuity of the eigenvalues and eigenfunctions as a function of fractional index, we derive the simplicity of the eigenvalues of the fractional Laplace nonlocal operator for all fractional index by adopting a stet-by-step iterative approach. Furthermore, using the α-harmonic extension, we receive that the corresponding eigenfunction has at most zeros in . At last, from an experiment point of view, we give the numerical eigenvalues and eigenfunctions of the weighted fractional Laplace problem by means of the finite element method in some special cases, which enriches the theoretical results. The spectral results presented here, especially the simplicity of eigenvalues resolve a conjecture of Bañuelos and Kulczycki.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics