Shubham Singh, Paresh C. Rout, Mohammed Ghadiyali, Udo Schwingenschlögl
{"title":"V2Se2O and Janus V2SeTeO: Monolayer altermagnets for the thermoelectric recovery of low-temperature waste heat","authors":"Shubham Singh, Paresh C. Rout, Mohammed Ghadiyali, Udo Schwingenschlögl","doi":"10.1016/j.mser.2025.101017","DOIUrl":null,"url":null,"abstract":"<div><div>We determine the thermoelectric properties of the V<sub>2</sub>Se<sub>2</sub>O and Janus V<sub>2</sub>SeTeO monolayer altermagnets with narrow direct band gaps of 0.74 and 0.26 eV, respectively. Monte Carlo simulations reveal Néel temperatures of 800 K for V<sub>2</sub>Se<sub>2</sub>O and 525 K for Janus V<sub>2</sub>SeTeO. The electrical conductivity is higher for <em>p</em>-type charge carriers than for <em>n</em>-type charge carriers due to lower effective masses. The presence of heavy Te atoms in Janus V<sub>2</sub>SeTeO results in lower phonon group velocities, higher phonon scattering rates, and higher lattice anharmonicity than in the case of V<sub>2</sub>Se<sub>2</sub>O, leading to an almost 19-fold reduction of the lattice thermal conductivity at 300 K. The thermoelectric figure of merit of V<sub>2</sub>Se<sub>2</sub>O reaches 0.4 (0.1) and that of Janus V<sub>2</sub>SeTeO reaches 2.7 (1.0) just below the Néel temperature at the optimal <em>p</em>-type (<em>n</em>-type) charge carrier density, demonstrating that altermagnets have excellent potential in the thermoelectric recovery of low-temperature waste heat.</div></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"166 ","pages":"Article 101017"},"PeriodicalIF":31.6000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: R: Reports","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927796X25000944","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We determine the thermoelectric properties of the V2Se2O and Janus V2SeTeO monolayer altermagnets with narrow direct band gaps of 0.74 and 0.26 eV, respectively. Monte Carlo simulations reveal Néel temperatures of 800 K for V2Se2O and 525 K for Janus V2SeTeO. The electrical conductivity is higher for p-type charge carriers than for n-type charge carriers due to lower effective masses. The presence of heavy Te atoms in Janus V2SeTeO results in lower phonon group velocities, higher phonon scattering rates, and higher lattice anharmonicity than in the case of V2Se2O, leading to an almost 19-fold reduction of the lattice thermal conductivity at 300 K. The thermoelectric figure of merit of V2Se2O reaches 0.4 (0.1) and that of Janus V2SeTeO reaches 2.7 (1.0) just below the Néel temperature at the optimal p-type (n-type) charge carrier density, demonstrating that altermagnets have excellent potential in the thermoelectric recovery of low-temperature waste heat.
期刊介绍:
Materials Science & Engineering R: Reports is a journal that covers a wide range of topics in the field of materials science and engineering. It publishes both experimental and theoretical research papers, providing background information and critical assessments on various topics. The journal aims to publish high-quality and novel research papers and reviews.
The subject areas covered by the journal include Materials Science (General), Electronic Materials, Optical Materials, and Magnetic Materials. In addition to regular issues, the journal also publishes special issues on key themes in the field of materials science, including Energy Materials, Materials for Health, Materials Discovery, Innovation for High Value Manufacturing, and Sustainable Materials development.