Decoding up to Hartmann–Tzeng and Roos bounds for rank codes

IF 1.2 3区 数学 Q1 MATHEMATICS
José Manuel Muñoz
{"title":"Decoding up to Hartmann–Tzeng and Roos bounds for rank codes","authors":"José Manuel Muñoz","doi":"10.1016/j.ffa.2025.102676","DOIUrl":null,"url":null,"abstract":"<div><div>A class of linear block codes which simultaneously generalizes Gabidulin codes and a class of skew cyclic codes is defined. For these codes, both a Hartmann–Tzeng-like bound and a Roos-like bound, with respect to their rank distance, are described, and corresponding nearest-neighbor decoding algorithms are presented. Additional necessary conditions so that decoding can be done up to the described bounds are studied. Subfield subcodes and interleaved codes from the considered class of codes are also described, since they allow an unbounded length for the codes, providing a decoding algorithm for them; additionally, both approaches are shown to yield equivalent codes with respect to the rank metric.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"108 ","pages":"Article 102676"},"PeriodicalIF":1.2000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579725001066","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A class of linear block codes which simultaneously generalizes Gabidulin codes and a class of skew cyclic codes is defined. For these codes, both a Hartmann–Tzeng-like bound and a Roos-like bound, with respect to their rank distance, are described, and corresponding nearest-neighbor decoding algorithms are presented. Additional necessary conditions so that decoding can be done up to the described bounds are studied. Subfield subcodes and interleaved codes from the considered class of codes are also described, since they allow an unbounded length for the codes, providing a decoding algorithm for them; additionally, both approaches are shown to yield equivalent codes with respect to the rank metric.
解码到Hartmann-Tzeng和Roos界的秩码
定义了一类同时推广加比度林码和一类偏循环码的线性分组码。对于这些码,分别描述了关于秩距离的类hartmann - tzeng_bound和类roos_bound,并给出了相应的最近邻解码算法。另外的必要条件,使解码可以完成到所描述的界限进行了研究。还描述了所考虑的代码类中的子域子码和交错码,因为它们允许代码的无界长度,并为它们提供了解码算法;此外,两种方法都显示出相对于秩度量产生等效的代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
20.00%
发文量
133
审稿时长
6-12 weeks
期刊介绍: Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering. For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods. The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信