{"title":"Decoding up to Hartmann–Tzeng and Roos bounds for rank codes","authors":"José Manuel Muñoz","doi":"10.1016/j.ffa.2025.102676","DOIUrl":null,"url":null,"abstract":"<div><div>A class of linear block codes which simultaneously generalizes Gabidulin codes and a class of skew cyclic codes is defined. For these codes, both a Hartmann–Tzeng-like bound and a Roos-like bound, with respect to their rank distance, are described, and corresponding nearest-neighbor decoding algorithms are presented. Additional necessary conditions so that decoding can be done up to the described bounds are studied. Subfield subcodes and interleaved codes from the considered class of codes are also described, since they allow an unbounded length for the codes, providing a decoding algorithm for them; additionally, both approaches are shown to yield equivalent codes with respect to the rank metric.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"108 ","pages":"Article 102676"},"PeriodicalIF":1.2000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579725001066","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
A class of linear block codes which simultaneously generalizes Gabidulin codes and a class of skew cyclic codes is defined. For these codes, both a Hartmann–Tzeng-like bound and a Roos-like bound, with respect to their rank distance, are described, and corresponding nearest-neighbor decoding algorithms are presented. Additional necessary conditions so that decoding can be done up to the described bounds are studied. Subfield subcodes and interleaved codes from the considered class of codes are also described, since they allow an unbounded length for the codes, providing a decoding algorithm for them; additionally, both approaches are shown to yield equivalent codes with respect to the rank metric.
期刊介绍:
Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering.
For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods.
The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.