Wenzhang Liu , Hongchao Huang , Futing Shu , Yingying Liu , Jiezhi Lin , Lu Yang , Wei Zhang , Luofeng Jiang , Tianyi Liu , Chaoran Xie , Lei Li , Yin He , Shichu Xiao , Yongjun Zheng , Zhaofan Xia
{"title":"AntagomiR-192-5p-engineered exosomes encapsulated in MXene-modified GelMA hydrogel facilitated epithelization of burn wounds by targeting OLFM4","authors":"Wenzhang Liu , Hongchao Huang , Futing Shu , Yingying Liu , Jiezhi Lin , Lu Yang , Wei Zhang , Luofeng Jiang , Tianyi Liu , Chaoran Xie , Lei Li , Yin He , Shichu Xiao , Yongjun Zheng , Zhaofan Xia","doi":"10.1016/j.bioactmat.2025.06.013","DOIUrl":null,"url":null,"abstract":"<div><div>Burn wound healing is a multifaceted process often complicated by excessive inflammation and impaired keratinocyte function, both of which are key factors contributing to delayed healing. In this study we screened the key miRNA regulating the epithelialization process under oxidative stress conditions through high-throughput sequencing. We identified that miR-192-5p was significantly upregulated in both oxidative stress models of keratinocytes and burn wound tissues, with detrimental effects on keratinocyte proliferation, migration, and apoptosis. Inhibition of miR-192-5p enhanced epidermal cell function by upregulating olfactomedin-4 (OLFM4), a key gene associated with cell proliferation, adhesion and migration. To optimize delivery and therapeutic efficacy, we engineered MSC-derived exosomes loaded with antagomiR-192-5p (ant-192; Final content: 2 nmol per wound; Loading efficiency: 35.22 ± 0.34 %) and then encapsulated into a composite hydrogel composed of GelMA and MXene (Ti<sub>3</sub>C<sub>2</sub>Tx) nanosheets, forming a multifunctional dressing (Exo-ant-192@M-Gel). It achieved sustained release of ant-192, delay its degradation, and exert anti-inflammatory properties, thus promoting epithelization and burn wound healing. This study offered a novel therapeutic approach for burn wound closure.</div></div>","PeriodicalId":8762,"journal":{"name":"Bioactive Materials","volume":"52 ","pages":"Pages 318-337"},"PeriodicalIF":18.0000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioactive Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452199X25002361","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Burn wound healing is a multifaceted process often complicated by excessive inflammation and impaired keratinocyte function, both of which are key factors contributing to delayed healing. In this study we screened the key miRNA regulating the epithelialization process under oxidative stress conditions through high-throughput sequencing. We identified that miR-192-5p was significantly upregulated in both oxidative stress models of keratinocytes and burn wound tissues, with detrimental effects on keratinocyte proliferation, migration, and apoptosis. Inhibition of miR-192-5p enhanced epidermal cell function by upregulating olfactomedin-4 (OLFM4), a key gene associated with cell proliferation, adhesion and migration. To optimize delivery and therapeutic efficacy, we engineered MSC-derived exosomes loaded with antagomiR-192-5p (ant-192; Final content: 2 nmol per wound; Loading efficiency: 35.22 ± 0.34 %) and then encapsulated into a composite hydrogel composed of GelMA and MXene (Ti3C2Tx) nanosheets, forming a multifunctional dressing (Exo-ant-192@M-Gel). It achieved sustained release of ant-192, delay its degradation, and exert anti-inflammatory properties, thus promoting epithelization and burn wound healing. This study offered a novel therapeutic approach for burn wound closure.
Bioactive MaterialsBiochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
28.00
自引率
6.30%
发文量
436
审稿时长
20 days
期刊介绍:
Bioactive Materials is a peer-reviewed research publication that focuses on advancements in bioactive materials. The journal accepts research papers, reviews, and rapid communications in the field of next-generation biomaterials that interact with cells, tissues, and organs in various living organisms.
The primary goal of Bioactive Materials is to promote the science and engineering of biomaterials that exhibit adaptiveness to the biological environment. These materials are specifically designed to stimulate or direct appropriate cell and tissue responses or regulate interactions with microorganisms.
The journal covers a wide range of bioactive materials, including those that are engineered or designed in terms of their physical form (e.g. particulate, fiber), topology (e.g. porosity, surface roughness), or dimensions (ranging from macro to nano-scales). Contributions are sought from the following categories of bioactive materials:
Bioactive metals and alloys
Bioactive inorganics: ceramics, glasses, and carbon-based materials
Bioactive polymers and gels
Bioactive materials derived from natural sources
Bioactive composites
These materials find applications in human and veterinary medicine, such as implants, tissue engineering scaffolds, cell/drug/gene carriers, as well as imaging and sensing devices.