Data-driven scheme for two-scale chemo-mechanical coupled problem for heterogeneous materials under transient chemical diffusion

IF 4.3 3区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xinwei Yang , Chunwang He , Jie Yang , Yikun Wu , Le Yang , Hao-Sen Chen
{"title":"Data-driven scheme for two-scale chemo-mechanical coupled problem for heterogeneous materials under transient chemical diffusion","authors":"Xinwei Yang ,&nbsp;Chunwang He ,&nbsp;Jie Yang ,&nbsp;Yikun Wu ,&nbsp;Le Yang ,&nbsp;Hao-Sen Chen","doi":"10.1016/j.eml.2025.102363","DOIUrl":null,"url":null,"abstract":"<div><div>This study developed a data-driven computational scheme of multiscale multiphysics coupled problem for heterogeneous materials under transient chemical diffusion. Firstly, the data-driven scheme decouples the multiscale problem into two stages, i.e., offline generation of material constitutive behavior database by microscopic simulation, and online macroscopic boundary value problem (BVP) based on the data-driven mechanical scheme. In addition, data-driven scheme converts the multiphysics coupled constitutive relationship into the material conjugate quantities in database which avoids the poor convergence in multiscale multiphysics coupled calculation. Then, a two-scale chemo-mechanical model with a simple microstructure is validated in two cases: diffusion-induced mechanical deformation and deformation-enhanced chemical diffusion. The results show that the proposed framework can characterize the chemo-mechanical coupled behavior with good convergence and accuracy, which is more efficient than the full-scale finite element simulation. Finally, this data-driven scheme is applied to analyze the multilayer porosity structures for lithium-ion battery cathodes. The results show that cathodes with gradient porosity design can improve the utilization of active materials and enhance the effective capacity.</div></div>","PeriodicalId":56247,"journal":{"name":"Extreme Mechanics Letters","volume":"78 ","pages":"Article 102363"},"PeriodicalIF":4.3000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extreme Mechanics Letters","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352431625000756","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study developed a data-driven computational scheme of multiscale multiphysics coupled problem for heterogeneous materials under transient chemical diffusion. Firstly, the data-driven scheme decouples the multiscale problem into two stages, i.e., offline generation of material constitutive behavior database by microscopic simulation, and online macroscopic boundary value problem (BVP) based on the data-driven mechanical scheme. In addition, data-driven scheme converts the multiphysics coupled constitutive relationship into the material conjugate quantities in database which avoids the poor convergence in multiscale multiphysics coupled calculation. Then, a two-scale chemo-mechanical model with a simple microstructure is validated in two cases: diffusion-induced mechanical deformation and deformation-enhanced chemical diffusion. The results show that the proposed framework can characterize the chemo-mechanical coupled behavior with good convergence and accuracy, which is more efficient than the full-scale finite element simulation. Finally, this data-driven scheme is applied to analyze the multilayer porosity structures for lithium-ion battery cathodes. The results show that cathodes with gradient porosity design can improve the utilization of active materials and enhance the effective capacity.
非均质材料瞬态化学扩散双尺度化学-力学耦合问题的数据驱动格式
本文提出了非均质材料瞬态化学扩散下多尺度多物理场耦合问题的数据驱动计算方案。首先,数据驱动方案将多尺度问题解耦为两个阶段,即通过微观模拟离线生成材料本构行为数据库,以及基于数据驱动力学方案的在线宏观边值问题。此外,数据驱动方案将多物理场耦合本构关系转换为数据库中的材料共轭量,避免了多尺度多物理场耦合计算收敛性差的问题。然后,在扩散引起的机械变形和变形增强的化学扩散两种情况下,验证了具有简单微观结构的双尺度化学-力学模型。结果表明,该框架能较好地表征化学-力学耦合行为,具有较好的收敛性和精度,比全尺寸有限元模拟更有效。最后,将该数据驱动方案应用于锂离子电池阴极的多层孔隙结构分析。结果表明,采用梯度孔隙度设计的阴极可以提高活性物质的利用率,提高阴极的有效容量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Extreme Mechanics Letters
Extreme Mechanics Letters Engineering-Mechanics of Materials
CiteScore
9.20
自引率
4.30%
发文量
179
审稿时长
45 days
期刊介绍: Extreme Mechanics Letters (EML) enables rapid communication of research that highlights the role of mechanics in multi-disciplinary areas across materials science, physics, chemistry, biology, medicine and engineering. Emphasis is on the impact, depth and originality of new concepts, methods and observations at the forefront of applied sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信