Xinwei Yang , Chunwang He , Jie Yang , Yikun Wu , Le Yang , Hao-Sen Chen
{"title":"Data-driven scheme for two-scale chemo-mechanical coupled problem for heterogeneous materials under transient chemical diffusion","authors":"Xinwei Yang , Chunwang He , Jie Yang , Yikun Wu , Le Yang , Hao-Sen Chen","doi":"10.1016/j.eml.2025.102363","DOIUrl":null,"url":null,"abstract":"<div><div>This study developed a data-driven computational scheme of multiscale multiphysics coupled problem for heterogeneous materials under transient chemical diffusion. Firstly, the data-driven scheme decouples the multiscale problem into two stages, i.e., offline generation of material constitutive behavior database by microscopic simulation, and online macroscopic boundary value problem (BVP) based on the data-driven mechanical scheme. In addition, data-driven scheme converts the multiphysics coupled constitutive relationship into the material conjugate quantities in database which avoids the poor convergence in multiscale multiphysics coupled calculation. Then, a two-scale chemo-mechanical model with a simple microstructure is validated in two cases: diffusion-induced mechanical deformation and deformation-enhanced chemical diffusion. The results show that the proposed framework can characterize the chemo-mechanical coupled behavior with good convergence and accuracy, which is more efficient than the full-scale finite element simulation. Finally, this data-driven scheme is applied to analyze the multilayer porosity structures for lithium-ion battery cathodes. The results show that cathodes with gradient porosity design can improve the utilization of active materials and enhance the effective capacity.</div></div>","PeriodicalId":56247,"journal":{"name":"Extreme Mechanics Letters","volume":"78 ","pages":"Article 102363"},"PeriodicalIF":4.3000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extreme Mechanics Letters","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352431625000756","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study developed a data-driven computational scheme of multiscale multiphysics coupled problem for heterogeneous materials under transient chemical diffusion. Firstly, the data-driven scheme decouples the multiscale problem into two stages, i.e., offline generation of material constitutive behavior database by microscopic simulation, and online macroscopic boundary value problem (BVP) based on the data-driven mechanical scheme. In addition, data-driven scheme converts the multiphysics coupled constitutive relationship into the material conjugate quantities in database which avoids the poor convergence in multiscale multiphysics coupled calculation. Then, a two-scale chemo-mechanical model with a simple microstructure is validated in two cases: diffusion-induced mechanical deformation and deformation-enhanced chemical diffusion. The results show that the proposed framework can characterize the chemo-mechanical coupled behavior with good convergence and accuracy, which is more efficient than the full-scale finite element simulation. Finally, this data-driven scheme is applied to analyze the multilayer porosity structures for lithium-ion battery cathodes. The results show that cathodes with gradient porosity design can improve the utilization of active materials and enhance the effective capacity.
期刊介绍:
Extreme Mechanics Letters (EML) enables rapid communication of research that highlights the role of mechanics in multi-disciplinary areas across materials science, physics, chemistry, biology, medicine and engineering. Emphasis is on the impact, depth and originality of new concepts, methods and observations at the forefront of applied sciences.