Austin C. Houston, Sumner B. Harris*, Hao Wang, Yu-Chuan Lin, David B. Geohegan, Kai Xiao and Gerd Duscher*,
{"title":"Atom Identification in Bilayer Moiré Materials with Gomb-Net","authors":"Austin C. Houston, Sumner B. Harris*, Hao Wang, Yu-Chuan Lin, David B. Geohegan, Kai Xiao and Gerd Duscher*, ","doi":"10.1021/acs.nanolett.5c0146010.1021/acs.nanolett.5c01460","DOIUrl":null,"url":null,"abstract":"<p >Moiré patterns in van der Waals bilayer materials complicate the analysis of atomic-resolution images, hindering the atomic-scale insight typically attainable with scanning transmission electron microscopy. Here, we report a method to detect the positions and identities of atoms in each of the individual layers that compose twisted bilayer heterostructures. We developed a deep learning model, Gomb-Net, which identifies the coordinates and atomic species in each layer, deconvoluting the moiré pattern. This enables layer-specific mapping of atomic positions and dopant distributions, unlike other commonly used segmentation models which struggle with moiré-induced complexity. Using this approach, we explored the Se atom substitutional site distribution in a twisted fractional Janus WS<sub>2</sub>-WS<sub>2(1–<i>x</i>)</sub>Se<sub>2<i>x</i></sub> heterostructure and found that layer-specific implantation sites are unaffected by the moiré pattern’s local energetic or electronic modulation. This advancement enables atom identification within material regimes where it was not possible before, opening new insights into previously inaccessible material physics.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"25 23","pages":"9277–9284 9277–9284"},"PeriodicalIF":9.1000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c01460","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Moiré patterns in van der Waals bilayer materials complicate the analysis of atomic-resolution images, hindering the atomic-scale insight typically attainable with scanning transmission electron microscopy. Here, we report a method to detect the positions and identities of atoms in each of the individual layers that compose twisted bilayer heterostructures. We developed a deep learning model, Gomb-Net, which identifies the coordinates and atomic species in each layer, deconvoluting the moiré pattern. This enables layer-specific mapping of atomic positions and dopant distributions, unlike other commonly used segmentation models which struggle with moiré-induced complexity. Using this approach, we explored the Se atom substitutional site distribution in a twisted fractional Janus WS2-WS2(1–x)Se2x heterostructure and found that layer-specific implantation sites are unaffected by the moiré pattern’s local energetic or electronic modulation. This advancement enables atom identification within material regimes where it was not possible before, opening new insights into previously inaccessible material physics.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.