Co(II)-Mediated Catalytic Chain Transfer Polymerization (CCTP) Carried Out Under Flow Reaction Conditions and Introducing a New Method for Online GPC Monitoring
Yanpu Yao, Xiaofan Yang, Cansu Aydogan, James Town, William Pointer and David M. Haddleton*,
{"title":"Co(II)-Mediated Catalytic Chain Transfer Polymerization (CCTP) Carried Out Under Flow Reaction Conditions and Introducing a New Method for Online GPC Monitoring","authors":"Yanpu Yao, Xiaofan Yang, Cansu Aydogan, James Town, William Pointer and David M. Haddleton*, ","doi":"10.1021/acspolymersau.5c0002010.1021/acspolymersau.5c00020","DOIUrl":null,"url":null,"abstract":"<p >We report an investigation into the thermally induced catalytic chain transfer polymerization (CCTP) using bis[(difluoroboryl)dimethylglyoximato] cobalt(II) (CoBF) as a chain transfer agent in three different flow reactors: (1) a cascade of continuous stirred-tank reactors (CSTRs), (2) a simple tubular flow reactor, and (3) a Corning Advanced Flow Reactor (AFR). Systematic variations in monomer type, temperature, and stirring rate were employed to investigate their effects on the polymerization process. In the CSTR cascade, higher polymerization rates and conversions were observed without compromising reaction control. Comparative analyses between the flow systems and conventional batch reactions were performed to assess the performance of CoBF under these different reaction conditions. All reactor designs proved successful in carrying out CCTP, and this chemistry is well-suited to continuous production under different flow conditions. The applicability of the reaction system was further verified with successful CCTP of glycidyl methacrylate, and the reproducibility was confirmed by using online continuous GPC.</p>","PeriodicalId":72049,"journal":{"name":"ACS polymers Au","volume":"5 3","pages":"311–322 311–322"},"PeriodicalIF":6.9000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acspolymersau.5c00020","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS polymers Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acspolymersau.5c00020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
We report an investigation into the thermally induced catalytic chain transfer polymerization (CCTP) using bis[(difluoroboryl)dimethylglyoximato] cobalt(II) (CoBF) as a chain transfer agent in three different flow reactors: (1) a cascade of continuous stirred-tank reactors (CSTRs), (2) a simple tubular flow reactor, and (3) a Corning Advanced Flow Reactor (AFR). Systematic variations in monomer type, temperature, and stirring rate were employed to investigate their effects on the polymerization process. In the CSTR cascade, higher polymerization rates and conversions were observed without compromising reaction control. Comparative analyses between the flow systems and conventional batch reactions were performed to assess the performance of CoBF under these different reaction conditions. All reactor designs proved successful in carrying out CCTP, and this chemistry is well-suited to continuous production under different flow conditions. The applicability of the reaction system was further verified with successful CCTP of glycidyl methacrylate, and the reproducibility was confirmed by using online continuous GPC.