Dynamic Electron Spring Effect in Hollow Fe2O3/CoSe2 Heterostructure Enhance Ethanol Electro-Oxidation Activity and Stability

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Shunlian Ning, Yongqi Jian, Guang-Qiang Yu, Jinchang Xu, Ming-Hsien Lee, Dawei Wang, HongYan Chen, Mihail Barboiu, Xiaojun Liu, Dengke Zhao, Linjing Yang, Nan Wang
{"title":"Dynamic Electron Spring Effect in Hollow Fe2O3/CoSe2 Heterostructure Enhance Ethanol Electro-Oxidation Activity and Stability","authors":"Shunlian Ning, Yongqi Jian, Guang-Qiang Yu, Jinchang Xu, Ming-Hsien Lee, Dawei Wang, HongYan Chen, Mihail Barboiu, Xiaojun Liu, Dengke Zhao, Linjing Yang, Nan Wang","doi":"10.1002/adfm.202509007","DOIUrl":null,"url":null,"abstract":"Developing efficient non-noble electrocatalysts with high activity and selectivity for ethanol oxidation reaction (EOR) across a wide potential range remains a significant challenge in hybrid energy systems. Herein, hollow Fe<sub>2</sub>O<sub>3</sub>/CoSe<sub>2</sub> heterostructures (H-Fe<sub>2</sub>O<sub>3</sub>/CoSe<sub>2</sub>@C) via interface engineering are reported as highly effective EOR promising electrocatalysts. Characterizations reveal that Fe<sub>2</sub>O<sub>3</sub> functions as a dynamic electron spring to tune the electronic structure of Co sites, accelerating the formation of the Fe<sub>2</sub>O<sub>3</sub>/CoOOH heterostructure while suppressing Fe<sub>2</sub>O<sub>3</sub>/CoO<sub>2</sub> evolution. In situ Raman spectroscopy and theoretical calculation confirm that the Fe<sub>2</sub>O<sub>3/</sub>CoOOH heterostructure enhances EOR kinetics and lowers the energy barrier of the potential-determining step. Quasi in situ X-ray photoelectron spectroscopy further demonstrates that Fe<sub>2</sub>O<sub>3</sub> stabilizes Co<sup>3+</sup>against overoxidation, expanding the operational potential window. Consequently, H-Fe<sub>2</sub>O<sub>3</sub>/CoSe<sub>2</sub>@C achieves outstanding EOR performance, exhibiting 10 mA cm<sup>−2</sup> @1.30 V vs. RHE with a high faradaic efficiency of 99% at 1.30 V. Ethanol-assisted Zn-Air battery/water splitting devices based on H-Fe<sub>2</sub>O<sub>3</sub>/CoSe<sub>2</sub>@C demonstrate enhanced energy conversion efficiency, with voltage reduced by 210 and 180 mV at 10 mA cm<sup>−2</sup>, respectively. This work provides critical insights for designing heterostructure electrocatalysts and advancing the utilization of biomass energy.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"8 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202509007","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Developing efficient non-noble electrocatalysts with high activity and selectivity for ethanol oxidation reaction (EOR) across a wide potential range remains a significant challenge in hybrid energy systems. Herein, hollow Fe2O3/CoSe2 heterostructures (H-Fe2O3/CoSe2@C) via interface engineering are reported as highly effective EOR promising electrocatalysts. Characterizations reveal that Fe2O3 functions as a dynamic electron spring to tune the electronic structure of Co sites, accelerating the formation of the Fe2O3/CoOOH heterostructure while suppressing Fe2O3/CoO2 evolution. In situ Raman spectroscopy and theoretical calculation confirm that the Fe2O3/CoOOH heterostructure enhances EOR kinetics and lowers the energy barrier of the potential-determining step. Quasi in situ X-ray photoelectron spectroscopy further demonstrates that Fe2O3 stabilizes Co3+against overoxidation, expanding the operational potential window. Consequently, H-Fe2O3/CoSe2@C achieves outstanding EOR performance, exhibiting 10 mA cm−2 @1.30 V vs. RHE with a high faradaic efficiency of 99% at 1.30 V. Ethanol-assisted Zn-Air battery/water splitting devices based on H-Fe2O3/CoSe2@C demonstrate enhanced energy conversion efficiency, with voltage reduced by 210 and 180 mV at 10 mA cm−2, respectively. This work provides critical insights for designing heterostructure electrocatalysts and advancing the utilization of biomass energy.

Abstract Image

Fe2O3/CoSe2中空异质结构中动态电子弹簧效应增强乙醇电氧化活性和稳定性
在混合能源系统中,开发高效、高活性、高选择性的乙醇氧化反应(EOR)电催化剂仍然是一个重大挑战。本文报道了通过界面工程制备的Fe2O3/CoSe2空心异质结构(H-Fe2O3/CoSe2@C)是一种高效的EOR电催化剂。表征结果表明,Fe2O3作为动态电子弹簧调节Co位点的电子结构,加速Fe2O3/CoOOH异质结构的形成,同时抑制Fe2O3/CoO2的演化。原位拉曼光谱和理论计算证实,Fe2O3/CoOOH异质结构提高了EOR动力学,降低了势决定步骤的能垒。准原位x射线光电子能谱进一步证明了Fe2O3稳定Co3+防止过氧化,扩大了操作电位窗口。因此,H-Fe2O3/CoSe2@C具有出色的EOR性能,与RHE相比,在1.30 V下具有高达99%的法拉第效率(10 mA cm−2 @1.30 V)。基于H-Fe2O3/CoSe2@C的乙醇辅助锌-空气电池/水分解装置的能量转换效率提高,在10 mA cm - 2时电压分别降低210和180 mV。这项工作为设计异质结构电催化剂和推进生物质能的利用提供了重要的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信